Adaptive responses of murine osteoblasts subjected to coupled mechanical stimuli.

Abstract:

:Restitution of the natural organization and orientation of cells is imperative for the construction of functional tissue scaffolds. While numerous studies have exploited mechanical methods to engineer tissues with the desired cellular architecture, fundamental knowledge is still lacking in understanding the manner in which morphological features can be modulated through coupled mechanical cues. To address this knowledge gap, the adhesion and alignment response of murine osteoblast cells under the synergistic effects of matrix rigidity and cyclic mechanical loading was investigated. This was accomplished by applying cyclic mechanical strain (1% at 0.05Hz) to MC3T3-E1 cells seeded on PDMS substrates of different elastic moduli (1.22, 1.70 and 2.04MPa). Results demonstrate that the overall cell density and expression of inactive vinculin increased on substrates subjected to cyclic stimulus in comparison to substrates under static loading. Conversely, in terms of the adhesion response, osteoblasts exhibited an increased growth of focal adhesion complexes under static substrates. Interestingly, results also elucidate that substrates of a stiffer matrix exposed to cyclic stimulus, had a significantly higher percentage of osteoblasts aligned parallel to the direction of the applied strain, as well as a higher degree of internal order with respect to the strain axis, in comparison to both cells seeded on substrates of lower stiffness under cyclic loading or under static conditions. These findings suggest the role of cyclic mechanical strain coupled with matrix rigidity in eliciting mechanosensitive adaptations in cell functions that allow for the reconstitution of the spatial and orientational assembly of cells in vivo for tissue engineering.

authors

Serrano JC,Cora-Cruz J,Diffoot-Carlo N,Sundaram PA

doi

10.1016/j.jmbbm.2017.09.018

subject

Has Abstract

pub_date

2018-01-01 00:00:00

pages

250-257

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(17)30412-5

journal_volume

77

pub_type

杂志文章
  • Mechanistic modeling of a nanoscratch test for determination of in situ toughness of bone.

    abstract::The objective of this study was to develop a nanoscratch technique that can be used to measure the in situ toughness of bone at micro/nanostructural levels. Among the currently possible techniques, the surface scratch test may be conducted on very small regions, thus exhibiting a potential in determining the in situ f...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.019

    authors: Islam A,Neil Dong X,Wang X

    更新日期:2012-01-01 00:00:00

  • Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase.

    abstract::The microstructure and mechanical properties of as-extruded Mg-8Y-1Er-2Zn (wt%) alloy containing long period stacking ordered (LPSO) phase are comparatively investigated before and after corrosion in a simulated body fluid (SBF) at 37°C. The as-extruded alloy consists of a long strip-like 18R-LPSO phase and some fine ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.012

    authors: Leng Z,Zhang J,Yin T,Zhang L,Guo X,Peng Q,Zhang M,Wu R

    更新日期:2013-12-01 00:00:00

  • Mechanical response of human abdominal walls ex vivo: Effect of an incisional hernia and a mesh repair.

    abstract::The design of meshes for the treatment of incisional hernias could benefit from better knowledge of the mechanical response of the abdominal wall and how this response is affected by the implant. The aim of this study was to characterise the mechanical behaviour of the human abdominal wall. Abdominal walls were tested...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.07.002

    authors: Podwojewski F,Otténio M,Beillas P,Guérin G,Turquier F,Mitton D

    更新日期:2014-10-01 00:00:00

  • Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.

    abstract::The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of p...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.01.016

    authors: Yao W,Yoshida K,Fernandez M,Vink J,Wapner RJ,Ananth CV,Oyen ML,Myers KM

    更新日期:2014-06-01 00:00:00

  • Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF.

    abstract::Polylactic acid (PLA), one of the most likely green and environmentally friendly materials, is an alternative to petroleum-based plastic. It still remains a challenge to increase the degradation rate and decrease the cost of PLA without compromised mechanical properties. Low cost PLA/wood flour (WF) composite was elab...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.08.016

    authors: Wan L,Zhang Y

    更新日期:2018-12-01 00:00:00

  • Wear characteristics of WSU total ankle replacement devices under shear and torsion loads.

    abstract:BACKGROUND:There are several factors that contribute to the failure of total ankle replacement (TAR). Aseptic loosening is one of the primary mechanisms of failure in TAR. Since a cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is used as liner material, there is a need to quantify and develop methods to ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.12.010

    authors: Gundapaneni D,Tsatalis JT,Laughlin RT,Goswami T

    更新日期:2015-04-01 00:00:00

  • Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.

    abstract::The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to qu...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.020

    authors: Koester KJ,Barth HD,Ritchie RO

    更新日期:2011-10-01 00:00:00

  • Two-body wear of dental restorative materials.

    abstract:AIM:The aim of this in vitro study was to determine the two-body wear resistance of modern direct dental restorative materials. METHODS:Eight standardized specimens were prepared from 14 dental restorative materials (nano-, micro-, hybrid-, macrofilled composites; compomer, silorane, ormocer); a veneering composite (S...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.06.001

    authors: Hahnel S,Schultz S,Trempler C,Ach B,Handel G,Rosentritt M

    更新日期:2011-04-01 00:00:00

  • Effect of immediate dentine sealing on the fracture strength of lithium disilicate and multiphase resin composite inlay restorations.

    abstract:PURPOSE:Limited information is available on the effect of Immediate Dentin Sealing (IDS) on the fracture strength of indirect partial posterior restorations. This study evaluated the effect of IDS on the fracture strength and failure types of two indirect restorative materials. MATERIALS AND METHODS:Standard MOD inlay...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.04.002

    authors: van den Breemer CRG,Özcan M,Cune MS,van der Giezen R,Kerdijk W,Gresnigt MMM

    更新日期:2017-08-01 00:00:00

  • Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces.

    abstract::Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollag...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.04.002

    authors: Lai ZB,Wang M,Yan C,Oloyede A

    更新日期:2014-08-01 00:00:00

  • Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.

    abstract::The study concerns the determination of mechanical properties of human coronary arterial walls with both experimental and constitutive modeling approaches. The research material was harvested from 18 patients (range 50-84 years). On the basis of hospital records and visual observation, each tissue sample was classifie...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.021

    authors: Jankowska MA,Bartkowiak-Jowsa M,Bedzinski R

    更新日期:2015-10-01 00:00:00

  • Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element.

    abstract::Porous scaffolds of Ti-6Al-4V were produced by mixing of this alloy with different amount of magnesium (Mg) powders. The mixtures were compacted in steel die by applying uniaxial pressure of 500 MPa before sintering the compacts in sealed quartz tubes at 900 °C for 2 h. Employing Archimedes׳ principle and Image Tool s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.04.015

    authors: Kalantari SM,Arabi H,Mirdamadi S,Mirsalehi SA

    更新日期:2015-08-01 00:00:00

  • Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.

    abstract::Cell mechanics plays an important role in regulating the physiological activities of cells. The advent of atomic force microscopy (AFM) provides a novel powerful instrument for quantifying the mechanics of single cells at the nanoscale. The applications of AFM in single-cell mechanical assays in the past decade have s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.03.036

    authors: Li M,Liu L,Xu X,Xing X,Dang D,Xi N,Wang Y

    更新日期:2018-06-01 00:00:00

  • Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    abstract::The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.01.019

    authors: Shelef Y,Bar-On B

    更新日期:2017-09-01 00:00:00

  • The impact of metastasis on the mineral phase of vertebral bone tissue.

    abstract::The negative impact of metastases on the mechanical performance of vertebral bone is often attributed to reduced bone density and/or compromised architecture. However limited characterization has been done on the impact of metastasis on the mineralization of bone tissue and resulting changes in material behaviour. Thi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.12.017

    authors: Burke M,Atkins A,Kiss A,Akens M,Yee A,Whyne C

    更新日期:2017-05-01 00:00:00

  • Evaluation of four surface coating treatments for resin to zirconia bonding.

    abstract:OBJECTIVES:To compare the effects of four surface coating methods on resin to zirconia shear bond strength. MATERIAL AND METHODS:Eighty pre-sintered zirconia discs were prepared and randomly divided into five study groups according to the corresponding methods of surface treatments as follows: group C (control group, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.011

    authors: Liu D,Pow EHN,Tsoi JK,Matinlinna JP

    更新日期:2014-04-01 00:00:00

  • Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic.

    abstract::Considering the interest of the research community in the fatigue behavior of all-ceramic restorations and the time consumed in low-frequency cyclic fatigue tests, this study aimed to investigate the influence of the loading frequency on the zirconia fatigue strength. The biaxial flexural fatigue strength of Y-TZP dis...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.01.008

    authors: Fraga S,Pereira GKR,Freitas M,Kleverlaan CJ,Valandro LF,May LG

    更新日期:2016-08-01 00:00:00

  • Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons.

    abstract::Constitutive models for biological tissue are typically formulated as a mixture of constituents and the overall response is then assembled by superposition or compatibility. This ensures the stress response of the biological tissue to be in the range of a given constitutive relationship, guaranteeing that at least one...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.04.037

    authors: Akintunde AR,Miller KS,Schiavazzi DE

    更新日期:2019-08-01 00:00:00

  • Nanoscopic dynamic mechanical properties of intertubular and peritubular dentin.

    abstract::An experimental evaluation of intertubular and peritubular dentin was performed using nanoindentation and Dynamic Mechanical Analysis (DMA). The objective of the investigation was to evaluate the differences in dynamic mechanical behavior of these two constituents and to assess whether their response is frequency depe...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.010

    authors: Ryou H,Romberg E,Pashley DH,Tay FR,Arola D

    更新日期:2012-03-01 00:00:00

  • Influence of strain rate on the mechanical behavior of dry and hydrated chitosan-based dense materials for bioabsorbable implant applications.

    abstract::Chitosan has generated enormous interest in the scientific community because of its distinctive biological and physicochemical properties, which allow new advanced structures and applications. Porous chitosan scaffolds have been extensively studied and explored in bone generation, however it is still a challenge to ob...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2021.104337

    authors: Figueiredo L,Gregório AVL,Rodrigues A,Rosa PAR

    更新日期:2021-01-21 00:00:00

  • Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    abstract::Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.012

    authors: Slaboch CL,Alber MS,Rosen ED,Ovaert TC

    更新日期:2012-06-01 00:00:00

  • On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs.

    abstract::The present study describes the lubrication mechanisms within artificial hip joints considering real conformity of rubbing surfaces. Part I is focused on hard-on-soft material combination, introducing the fundamentals of lubrication performance. These pairs have not been explored in terms of in situ observation before...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.09.022

    authors: Nečas D,Vrbka M,Galandáková A,Křupka I,Hartl M

    更新日期:2019-01-01 00:00:00

  • Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur.

    abstract::Experimental investigations for anatomic variation in the magnitude and anisotropy of elastic constants in human femoral cortical bone tissue have typically focused on a limited number of convenient sites near the mid-diaphysis. However, the proximal and distal ends of the diaphysis are more clinically relevant to com...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.08.005

    authors: Espinoza Orías AA,Deuerling JM,Landrigan MD,Renaud JE,Roeder RK

    更新日期:2009-07-01 00:00:00

  • Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.

    abstract::Bone is a composite material consisting principally of apatite mineral, collagen fibrils, non-collagenous proteins, and other organic species. Recent electron microscopy studies have shown that the mineral in bone occurs as stacks of thin polycrystalline sheets ("mineral lamellae," MLs) which surround and lie between ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104132

    authors: Pang S,Schwarcz HP,Jasiuk I

    更新日期:2021-01-01 00:00:00

  • A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.

    abstract::Cosserat models of cancellous bone are constructed, relying on micromechanical approaches in order to investigate microstructure-related scale effects on the macroscopic properties of bone. The derivation of the effective mechanical properties of cancellous bone considered as a cellular solid modeled as two-dimensiona...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.012

    authors: Goda I,Assidi M,Belouettar S,Ganghoffer JF

    更新日期:2012-12-01 00:00:00

  • Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.

    abstract::This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.023

    authors: Liu Y,Zhu G,Yang H,Wang C,Zhang P,Han G

    更新日期:2018-01-01 00:00:00

  • Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure.

    abstract::The cornea, through its shape, is the main contributor to the eye׳s focusing power. Pathological alterations of the cornea strongly affect the eye power. To improve treatments, complex biomechanical models have been developed based on the architecture and mechanical properties of the collagen network in the stroma, th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.031

    authors: Benoit A,Latour G,Marie-Claire SK,Allain JM

    更新日期:2016-07-01 00:00:00

  • The use of hardened bone cement as an impaction grafting extender for revision hip arthroplasty.

    abstract::Impaction bone grafting is a method of restoring bone stock to patients who have suffered significant bone loss due to revision total hip surgery. The procedure requires morsellised cancellous bone (MCB) to be impacted into the site of bone loss in order to stabilise the prosthesis with the aim of long term resorption...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.002

    authors: Ruddy M,FitzPatrick DP,Stanton KT

    更新日期:2018-02-01 00:00:00

  • Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users.

    abstract::Pressure ulcers (PUs) are common in patients who chronically depend on a wheelchair for mobility, such as those with a spinal cord injury (SCI). In attempt to prevent the formation of PUs, pressure relieving maneuvers, such as push-ups, are commonly recommended for individuals with SCI. However, very little is known a...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.015

    authors: Levy A,Kopplin K,Gefen A

    更新日期:2013-12-01 00:00:00

  • Fracture origins in twenty-two dental alumina crowns.

    abstract:OBJECTIVES:The causes of in vivo fractures of all-ceramic dental crowns are not yet fully understood. The fracture origins often occur in the cervical margin in the approximal area, but the reason for this is unclear. The aim of this study was to evaluate the fracture origin of 22 of clinically-failed alumina crowns. ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.08.006

    authors: Øilo M,Quinn GD

    更新日期:2016-01-01 00:00:00