Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users.

Abstract:

:Pressure ulcers (PUs) are common in patients who chronically depend on a wheelchair for mobility, such as those with a spinal cord injury (SCI). In attempt to prevent the formation of PUs, pressure relieving maneuvers, such as push-ups, are commonly recommended for individuals with SCI. However, very little is known about skin and subcutaneous fat tissue load distributions during sitting and in particular their development during the process of regaining weight-bearing after a push-up. Knowledge on how these loads evolve during sitting-down is critical for understanding the susceptibility of skin to PUs. Considering the potential practical implications on guidelines for wheelchair users, we studied herein the build-up of shear loads in skin and subcutaneous fat using a model of the buttocks of a single SCI subject. Using 12 variants of our finite element (FE) model, we determined the shear loads in skin and subcutaneous fat tissues under the ischial tuberosities when sitting down on foam cushions with different stiffness properties, in healthy skin and scarred skin conditions, focusing on the time course of the build-up of tissue loads. We found substantial differences between the loading curves of skin and fat: While the fat was loaded at a nearly constant rate, skin loads increased nonlinearly - with a greater load/time slope at early skin-support contact. In the context of tissue health and prevention of PUs, this indicates that the more sensitive period with respect to skin integrity is at initial skin-support contact. We further found that the edges of a pre-existing scar are more susceptible to injury, and the greater risk for that is when a hypertrophic scar is present. Despite that this is a theoretical modeling study with associated limitations, we believe that it is already appropriate to recommend to patients to reposition themselves gradually and gently, and not to "fall" back into the wheelchair after finishing a push-up maneuver.

authors

Levy A,Kopplin K,Gefen A

doi

10.1016/j.jmbbm.2013.04.015

subject

Has Abstract

pub_date

2013-12-01 00:00:00

pages

436-47

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(13)00138-0

journal_volume

28

pub_type

杂志文章
  • Tribological properties of Ti-based alloys in a simulated bone-implant interface with Ringer's solution at fretting contacts.

    abstract::The wear properties of oxidized and non-oxidized gamma-TiAl (a potential biomaterial) as well as Ti-6Al-4V and CP-Ti disks were studied and characterized by means of standard wear tests using a custom made bone pin arrangement. The Ti-based disks were oxidized in air at 500 and 800 degrees C for one hour. The tribolog...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.06.006

    authors: Ramos-Saenz CR,Sundaram PA,Diffoot-Carlo N

    更新日期:2010-11-01 00:00:00

  • Thermal-stress analysis of ceramic laminate veneer restorations with different incisal preparations using micro-computed tomography-based 3D finite element models.

    abstract::Main objective of this study is to investigate the thermal behavior of ceramic laminate veneer restorations of the maxillary central incisor with different incisal preparations such as butt joint and palatinal chamfer using finite element method. In addition, it is also aimed to understand the effect of different ther...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.039

    authors: Celebi AT,Icer E,Eren MM,Baykasoglu C,Mugan A,Yildiz E

    更新日期:2017-11-01 00:00:00

  • Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft.

    abstract::An assessment tool to evaluate the degradation of biodegradable materials in a more physiological environment is still needed. Macrophages are critical players in host response, remodeling and degradation. In this study, a cell culture model using monocyte-derived primary macrophages was established to study the degra...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104077

    authors: Enayati M,Puchhammer S,Iturri J,Grasl C,Kaun C,Baudis S,Walter I,Schima H,Liska R,Wojta J,Toca-Herrera JL,Podesser BK,Bergmeister H

    更新日期:2020-12-01 00:00:00

  • Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    abstract:OBJECTIVES:The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. METHODS:After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens w...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.02.023

    authors: Zhang Z,Guo J,Sun Y,Tian B,Zheng X,Zhou M,He L,Zhang S

    更新日期:2018-05-01 00:00:00

  • Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods.

    abstract::Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic propertie...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.05.018

    authors: Zargarian A,Esfahanian M,Kadkhodapour J,Ziaei-Rad S

    更新日期:2014-09-01 00:00:00

  • Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    abstract::Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess musc...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.031

    authors: Pamuk U,Karakuzu A,Ozturk C,Acar B,Yucesoy CA

    更新日期:2016-10-01 00:00:00

  • Effect of immediate dentine sealing on the fracture strength of lithium disilicate and multiphase resin composite inlay restorations.

    abstract:PURPOSE:Limited information is available on the effect of Immediate Dentin Sealing (IDS) on the fracture strength of indirect partial posterior restorations. This study evaluated the effect of IDS on the fracture strength and failure types of two indirect restorative materials. MATERIALS AND METHODS:Standard MOD inlay...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.04.002

    authors: van den Breemer CRG,Özcan M,Cune MS,van der Giezen R,Kerdijk W,Gresnigt MMM

    更新日期:2017-08-01 00:00:00

  • Clinical versus pre-clinical FE models for vertebral body strength predictions.

    abstract::The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clini...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.11.018

    authors: Pahr DH,Schwiedrzik J,Dall'Ara E,Zysset PK

    更新日期:2014-05-01 00:00:00

  • Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge.

    abstract::The release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103459

    authors: Komorowicz E,Balázs N,Tanka-Salamon A,Varga Z,Szabó L,Bóta A,Longstaff C,Kolev K

    更新日期:2020-02-01 00:00:00

  • Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.

    abstract::Modeling human body response to dynamic loading events and developing biofidelic human surrogate systems require accurate material properties over a range of loading rates for various human organ tissues. This work describes a technique for measuring the shear properties of soft biomaterials at high rates of strain (1...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.06.008

    authors: Trexler MM,Lennon AM,Wickwire AC,Harrigan TP,Luong QT,Graham JL,Maisano AJ,Roberts JC,Merkle AC

    更新日期:2011-11-01 00:00:00

  • The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    abstract::The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, b...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.04.027

    authors: Petisco-Ferrero S,Fernández J,Fernández San Martín MM,Santamaría Ibarburu PA,Sarasua Oiz JR

    更新日期:2016-08-01 00:00:00

  • Effect of cell sample size in atomic force microscopy nanoindentation.

    abstract::Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.03.018

    authors: Marcotti S,Reilly GC,Lacroix D

    更新日期:2019-06-01 00:00:00

  • Interfascicular matrix-mediated transverse deformation and sliding of discontinuous tendon subcomponents control the viscoelasticity and failure of tendons.

    abstract::In the present article, we investigated the sliding of discontinuous tendon subcomponents and the variation of nonhomogeneous deformation in the human Achilles tendon (AT) over time using uniaxial tensile and relaxation tests. The deformation and the resulting strain distribution under uniaxial tension are examined us...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.027

    authors: Obuchowicz R,Ekiert M,Kohut P,Holak K,Ambrozinski L,Tomaszewski KA,Uhl T,Mlyniec A

    更新日期:2019-09-01 00:00:00

  • How does lubricant viscosity affect the wear behaviour of VitE-XLPE articulated against CoCr?

    abstract::Using a 50-station pin-on-disc (SuperCTPOD) machine, the influence of lubricant viscosity on the wear of vitamin E blended crosslinked polyethylene was investigated. Five different test lubricants were prepared by mixing different concentrations of carboxymethyl cellulose powder with deionised water. The viscosity ran...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104067

    authors: Kandemir G,Smith S,Chen J,Joyce TJ

    更新日期:2020-12-01 00:00:00

  • A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    abstract::Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dep...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.05.001

    authors: Morales Hurtado M,de Vries EG,Zeng X,van der Heide E

    更新日期:2016-09-01 00:00:00

  • Material property discontinuities in intervertebral disc porohyperelastic finite element models generate numerical instabilities due to volumetric strain variations.

    abstract::Numerical studies of the intervertebral disc (IVD) are important to better understand the load transfer and the mechanobiological processes within the disc. Among the relevant calculations, fluid-related outputs are critical to describe and explore accurately the tissue properties. Porohyperelastic finite element mode...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.05.012

    authors: Ruiz C,Noailly J,Lacroix D

    更新日期:2013-10-01 00:00:00

  • Effects of fibrin sealant and bone fragments on defect regeneration performed on rat tibiae: An experimental study.

    abstract::Fibrin sealant (FS) is a biomaterial that exhibits hemostatic and repairing properties. It has been successfully used as scaffolds and adhesives to improve repair and regeneration of tissues. The objective of this study was to evaluate the effect of FS in the regeneration process of bone defects in male rat tibias thr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103662

    authors: de Oliveira CTB,Leonel BC,de Oliveira AC,de Brito Paiva M,Ramos J,Barraviera B,Ferreira Junior RS,Shimano AC

    更新日期:2020-04-01 00:00:00

  • Performance analysis of grafted poly (2-methacryloyloxyethyl phosphorylcholine) on additively manufactured titanium substrate for hip implant applications.

    abstract::The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity beha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103412

    authors: Ghosh S,Abanteriba S,Wong S,Houshyar S

    更新日期:2019-12-01 00:00:00

  • Mechanical properties enhancement of self-cured PMMA reinforced with zirconia and boron nitride nanopowders for high-performance dental materials.

    abstract::We report on the mechanical properties regarding self-cured acrylic polymethyl methacrylate (PMMA) reinforced with hexagonal boron nitride (h-BN) and stabilized zirconia (8Y ZrO2) nanopowders. The nanocomposites were prepared by using both manual and ultrasonic mixing techniques. The fabricated specimens were subjecte...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103937

    authors: Alqahtani M

    更新日期:2020-10-01 00:00:00

  • Solute lean Ti-Nb-Fe alloys: An exploratory study.

    abstract::In this study, we explored the Ti-Nb-Fe system to find an optimal cost-effective composition with the lowest elastic modulus and the lowest added Nb content. Six Ti-(31-4x)Nb-(1+0.5x)Fe ingots were prepared and Nb was substituted with Fe, starting at Ti-31Nb-1.0Fe and going up to Ti-11Nb-3.5Fe (wt%). The ingots were s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.09.024

    authors: Salvador CAF,Dal Bó MR,Costa FH,Taipina MO,Lopes ESN,Caram R

    更新日期:2017-01-01 00:00:00

  • A method to develop mock arteries suitable for cell seeding and in-vitro cell culture experiments.

    abstract::Sylgard((R)) is a biocompatible elastomer which has been widely used in biomedical applications including in simulations of the mechanical response of soft tissues and mechanotransduction investigations. In this study the effect of fabrication parameters including base to curing agent ratio and curing time on the mech...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.04.003

    authors: Colombo A,Zahedmanesh H,Toner DM,Cahill PA,Lally C

    更新日期:2010-08-01 00:00:00

  • Development of novel zirconia implant's materials gradated design with improved bioactive surface.

    abstract::Zirconia implants are becoming a preference choice for different applications such as knee, dental, among others. In order to improve osseointegration, implant's surfaces are usually coated with bioactive materials like hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) that are very similar to the calcium pho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.022

    authors: Faria D,Pires JM,Boccaccini AR,Carvalho O,Silva FS,Mesquita-Guimarães J

    更新日期:2019-06-01 00:00:00

  • Mechano-geometrical skeletal muscle fibre characterisation under cyclic and relaxation loading.

    abstract::In the present work, mechano-geometrical characterisations of skeletal muscle fibres in two different deformation states, namely, axial tension and axial compression, were realised. In both cases, cyclic and relaxation tests were performed. Additionally, the changes in the volume of the fibres during deformation were ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104001

    authors: Böl M,Iyer R,Garcés-Schröder M,Kohn S,Dietzel A

    更新日期:2020-10-01 00:00:00

  • Evaluation of four surface coating treatments for resin to zirconia bonding.

    abstract:OBJECTIVES:To compare the effects of four surface coating methods on resin to zirconia shear bond strength. MATERIAL AND METHODS:Eighty pre-sintered zirconia discs were prepared and randomly divided into five study groups according to the corresponding methods of surface treatments as follows: group C (control group, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.011

    authors: Liu D,Pow EHN,Tsoi JK,Matinlinna JP

    更新日期:2014-04-01 00:00:00

  • The error of tensile strength tests and an approach for improvement.

    abstract:OBJECTIVES:The deviation and spread of values measured by tensile strength tests should be significantly reduced by optimized axially pull-off-device. MATERIAL AND METHODS:Factors like geometry, roughness, surface texture and fit of the specimens, the luting procedure (mixing ratio, compacting pressure) were standardi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.003

    authors: Behr M,Fuerst J,Rosentritt M

    更新日期:2018-11-01 00:00:00

  • Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications.

    abstract::Poly(vinyl alcohol) (PVA) is reinforced with TiO2 nanoparticles in order to enhance thermo-mechanical stabilities, surface characteristics and osteoblastic cell adhesion. PVA-TiO2 nanocomposite films with desirable mechanical, thermal and biocompatible properties are fabricated through solution casting method followed...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.009

    authors: Mohanapriya S,Mumjitha M,PurnaSai K,Raj V

    更新日期:2016-10-01 00:00:00

  • Fracture susceptibility of worn teeth.

    abstract::An experimental simulation study is made to determine the effects of occlusal wear on the capacity of teeth to resist fracture. Tests are carried out on model dome structures, using glass shells to represent enamel and epoxy filler to represent dentin. The top of the domes are ground and polished to produce flat surfa...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.028

    authors: Keown AJ,Bush MB,Ford C,Lee JJ,Constantino PJ,Lawn BR

    更新日期:2012-01-01 00:00:00

  • Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    abstract::Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above k...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.06.002

    authors: Arun S,Kanagaraj S

    更新日期:2015-10-01 00:00:00

  • Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design.

    abstract::The use of micropatterning to create uniform surface morphologies has been cited as yielding improvements in the coefficient of friction during high velocity sliding contact. Studies have not been preformed to determine if these micropatterns could also be useful in biomedical applications, such as total joint replace...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.022

    authors: Mitchell N,Eljach C,Lodge B,Sharp JL,Desjardins JD,Kennedy MS

    更新日期:2012-03-01 00:00:00

  • A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    abstract::In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.041

    authors: Lei Y,Masjedi S,Ferdous Z

    更新日期:2017-11-01 00:00:00