Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.

Abstract:

:Modeling human body response to dynamic loading events and developing biofidelic human surrogate systems require accurate material properties over a range of loading rates for various human organ tissues. This work describes a technique for measuring the shear properties of soft biomaterials at high rates of strain (100-1000 s(-1)) using a modified split Hopkinson pressure bar (SHPB). Establishing a uniform state of stress in the sample is a fundamental requirement for this type of high-rate testing. Input pulse shaping was utilized to tailor and control the ramping of the incident loading pulse such that a uniform stress state could be maintained within the specimen from the start of the test. Direct experimental verification of the stress uniformity in the sample was obtained via comparison of the force measured by piezoelectric quartz force gages on both the input and the output sides of the shear specimen. The technique was demonstrated for shear loading of silicone gel biosimulant materials and porcine brain tissue. Finite element simulations were utilized to further investigate the effect of pulse shaping on the loading rate and rise time. Simulations also provided a means for visualization of the degree of shear stress and strain uniformity in the specimen during an experiment. The presented technique can be applied to verify stress uniformity and ensure high quality data when measuring the dynamic shear modulus of soft biological simulants and tissue.

authors

Trexler MM,Lennon AM,Wickwire AC,Harrigan TP,Luong QT,Graham JL,Maisano AJ,Roberts JC,Merkle AC

doi

10.1016/j.jmbbm.2011.06.008

subject

Has Abstract

pub_date

2011-11-01 00:00:00

pages

1920-8

issue

8

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(11)00156-1

journal_volume

4

pub_type

杂志文章
  • Two-body wear of dental restorative materials.

    abstract:AIM:The aim of this in vitro study was to determine the two-body wear resistance of modern direct dental restorative materials. METHODS:Eight standardized specimens were prepared from 14 dental restorative materials (nano-, micro-, hybrid-, macrofilled composites; compomer, silorane, ormocer); a veneering composite (S...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.06.001

    authors: Hahnel S,Schultz S,Trempler C,Ach B,Handel G,Rosentritt M

    更新日期:2011-04-01 00:00:00

  • Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti-6Al-4V biomaterial in physiological solution.

    abstract::A laser based surface nitriding process was adopted to further enhance the osseo-integration, corrosion resistance, and tribological properties of the commonly used bioimplant alloy, Ti-6Al-4V. Earlier preliminary osteoblast, electrochemical, and corrosive wear studies of laser nitrided titanium in simulated body flui...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.05.017

    authors: Vora HD,Shanker Rajamure R,Dahotre SN,Ho YH,Banerjee R,Dahotre NB

    更新日期:2014-09-01 00:00:00

  • Solute lean Ti-Nb-Fe alloys: An exploratory study.

    abstract::In this study, we explored the Ti-Nb-Fe system to find an optimal cost-effective composition with the lowest elastic modulus and the lowest added Nb content. Six Ti-(31-4x)Nb-(1+0.5x)Fe ingots were prepared and Nb was substituted with Fe, starting at Ti-31Nb-1.0Fe and going up to Ti-11Nb-3.5Fe (wt%). The ingots were s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.09.024

    authors: Salvador CAF,Dal Bó MR,Costa FH,Taipina MO,Lopes ESN,Caram R

    更新日期:2017-01-01 00:00:00

  • Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    abstract::There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.023

    authors: Sheafi EM,Tanner KE

    更新日期:2014-01-01 00:00:00

  • Effect of immediate dentine sealing on the fracture strength of lithium disilicate and multiphase resin composite inlay restorations.

    abstract:PURPOSE:Limited information is available on the effect of Immediate Dentin Sealing (IDS) on the fracture strength of indirect partial posterior restorations. This study evaluated the effect of IDS on the fracture strength and failure types of two indirect restorative materials. MATERIALS AND METHODS:Standard MOD inlay...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.04.002

    authors: van den Breemer CRG,Özcan M,Cune MS,van der Giezen R,Kerdijk W,Gresnigt MMM

    更新日期:2017-08-01 00:00:00

  • Air-abrasion using new silica-alumina powders containing different silica concentrations: Effect on the microstructural characteristics and fatigue behavior of a Y-TZP ceramic.

    abstract::This study assessed the fatigue performance (biaxial flexure fatigue strength), surface characteristics (topography and roughness) and structural stability (t-m phase transformation) of a Y-TZP ceramic subjected to air-abrasion using new powders (7% and 20% silica-coated aluminum oxide particles) in comparison to comm...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.032

    authors: Cadore-Rodrigues AC,Prochnow C,Rippe MP,Oliveira JS,Jahn SL,Foletto EL,Pereira GKR,Valandro LF

    更新日期:2019-10-01 00:00:00

  • Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy - The influence of extrusion parameters on microstructure and mechanical characteristics.

    abstract::The Zn-based alloys, alloyed with the elements of the 2nd group of the periodic table, are considered as potential biodegradable materials suitable for the fabrication of small orthopaedic implants or cardiovascular stents. Unfortunately, the as-cast Zn-based alloys do not fulfil the requirements for mechanical proper...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103796

    authors: Čapek J,Kubásek J,Pinc J,Drahokoupil J,Čavojský M,Vojtěch D

    更新日期:2020-08-01 00:00:00

  • An interpenetrating network composite for a regenerative spinal disc application.

    abstract::Severe degeneration of the intervertebral disc has an immensely debilitating effect on quality of life that has become a serious health and economic burden throughout the world. The disc plays an integral role in biomechanical movement and support within the spine. The emergence of tissue engineering endeavours to res...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.10.015

    authors: Chan AH,Boughton PC,Ruys AJ,Oyen ML

    更新日期:2017-01-01 00:00:00

  • On the wear behavior and damage mechanism of bonded interface: Ceramic vs resin composite inlays.

    abstract::Advances in adhesive technologies have increased indications for the use of inlays. Decrease in the bonded interface integrity due to wear has been cited as the main cause of its failure. However, this process of interface degradation and the influence of inlay material on damage mechanism appear to be poorly understo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103430

    authors: Yu P,Xiong Y,Zhao P,Xu Z,Yu H,Arola D,Gao S

    更新日期:2020-01-01 00:00:00

  • Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity.

    abstract::The objective was to state zinc contribution in the effectiveness of novel zinc-doped dentin cements to achieve dentin remineralization, throughout a literature or narrative exploratory review. Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2020.104232

    authors: Toledano M,Osorio R,Vallecillo-Rivas M,Osorio E,Lynch CD,Aguilera FS,Toledano R,Sauro S

    更新日期:2021-02-01 00:00:00

  • Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    abstract::Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial r...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.12.005

    authors: Libonati F,Nair AK,Vergani L,Buehler MJ

    更新日期:2013-04-01 00:00:00

  • Stem cell therapy restores viscoelastic properties of myocardium in rat model of hypertension.

    abstract::Extensive remodeling of the myocardium is seen in a variety of cardiovascular diseases, including systemic hypertension. Stem cell therapy has been proposed to improve the clinical outcomes of hypertension, and we hypothesized that changes in mechanical properties of the myocardium would accompany the progression of d...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.041

    authors: Rubiano A,Qi Y,Guzzo D,Rathinasabapathy A,Rowe K,Pepine C,Simmons C

    更新日期:2016-06-01 00:00:00

  • Environmental fatigue of superelastic NiTi wire with two surface finishes.

    abstract::Surface finish of NiTi is widely perceived to affect its biocompatibility and corrosion fatigue performance. The aim of this work was to find out, whether a carefully engineered surface oxide shows any beneficial effect over electropolished surface on the fatigue performance of superelastic NiTi wire mechanically cycl...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104028

    authors: Racek J,Šittner P

    更新日期:2020-11-01 00:00:00

  • Influence of viscoelasticity of protein on the toughness of bone.

    abstract::Bone is an ultrafine composite of protein (collagen) and mineral (hydroxyapatite). An analysis to determine the influence of the viscoelasticity of protein on the toughness of bone at the ultrafine scale is conducted by developing a discrete lattice model appropriate for the ultrafine scale called the incremental cont...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.10.007

    authors: Anup S,Sivakumar SM,Suraishkumar GK

    更新日期:2010-04-01 00:00:00

  • Effect of collagen packing and moisture content on leather stiffness.

    abstract::Applications for skin derived collagen materials, such as leather and acellular dermal matrices, usually require both strength and flexibility. In general, both the tensile modulus (which has an impact on flexibility) and strength are known to increase with fiber alignment, in the tensile direction, for practically al...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.10.004

    authors: Kelly SJR,Weinkamer R,Bertinetti L,Edmonds RL,Sizeland KH,Wells HC,Fratzl P,Haverkamp RG

    更新日期:2019-02-01 00:00:00

  • Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons.

    abstract::Constitutive models for biological tissue are typically formulated as a mixture of constituents and the overall response is then assembled by superposition or compatibility. This ensures the stress response of the biological tissue to be in the range of a given constitutive relationship, guaranteeing that at least one...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.04.037

    authors: Akintunde AR,Miller KS,Schiavazzi DE

    更新日期:2019-08-01 00:00:00

  • Biomechanics of stomach tissues and structure in patients with obesity.

    abstract::Even though bariatric surgery is one of the most effective treatment option of obesity, post-surgical weight loss is not always ensured, especially in the long term, when many patients experience weight regain. Bariatric procedures are largely based on surgeon's expertise and intra-operative decisions, while an integr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103883

    authors: Carniel EL,Albanese A,Fontanella CG,Pavan PG,Prevedello L,Salmaso C,Todros S,Toniolo I,Foletto M

    更新日期:2020-10-01 00:00:00

  • Effects of fibrin sealant and bone fragments on defect regeneration performed on rat tibiae: An experimental study.

    abstract::Fibrin sealant (FS) is a biomaterial that exhibits hemostatic and repairing properties. It has been successfully used as scaffolds and adhesives to improve repair and regeneration of tissues. The objective of this study was to evaluate the effect of FS in the regeneration process of bone defects in male rat tibias thr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103662

    authors: de Oliveira CTB,Leonel BC,de Oliveira AC,de Brito Paiva M,Ramos J,Barraviera B,Ferreira Junior RS,Shimano AC

    更新日期:2020-04-01 00:00:00

  • The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    abstract::The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired pr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.014

    authors: Szewciw L,Zhu D,Barthelat F

    更新日期:2017-12-01 00:00:00

  • Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    abstract::Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatig...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.01.008

    authors: Ford AC,Gramling H,Li SC,Sov JV,Srinivasan A,Pruitt LA

    更新日期:2018-03-01 00:00:00

  • Mechanistic modeling of a nanoscratch test for determination of in situ toughness of bone.

    abstract::The objective of this study was to develop a nanoscratch technique that can be used to measure the in situ toughness of bone at micro/nanostructural levels. Among the currently possible techniques, the surface scratch test may be conducted on very small regions, thus exhibiting a potential in determining the in situ f...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.019

    authors: Islam A,Neil Dong X,Wang X

    更新日期:2012-01-01 00:00:00

  • Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design.

    abstract::The use of micropatterning to create uniform surface morphologies has been cited as yielding improvements in the coefficient of friction during high velocity sliding contact. Studies have not been preformed to determine if these micropatterns could also be useful in biomedical applications, such as total joint replace...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.08.022

    authors: Mitchell N,Eljach C,Lodge B,Sharp JL,Desjardins JD,Kennedy MS

    更新日期:2012-03-01 00:00:00

  • Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties.

    abstract::Tissue engineering technology requires porous scaffolds, based on biomaterials, which have to mimic as closely as possible the morphological and anisotropic mechanical properties of the native tissue to substitute. Anisotropic fibrous scaffolds fabricated by template-assisted electrospinning are investigated in this s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104124

    authors: Mondésert H,Bossard F,Favier D

    更新日期:2021-01-01 00:00:00

  • Characterization of persistent concussive syndrome using injury reconstruction and finite element modelling.

    abstract::Concussions occur 1.7 million times a year in North America, and account for approximately 75% of all traumatic brain injuries (TBI). Concussions usually cause transient symptoms but 10 to 20% of patients can have symptoms that persist longer than a month. The purpose of this research was to use reconstructions and fi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.07.034

    authors: Post A,Kendall M,Koncan D,Cournoyer J,Blaine Hoshizaki T,Gilchrist MD,Brien S,Cusimano MD,Marshall S

    更新日期:2015-01-01 00:00:00

  • Mechanical behavior of cells in microinjection: a minimum potential energy study.

    abstract::Microinjection is a widely used technique to deliver foreign materials into biological cells. We propose a mathematical model to study the mechanical behavior of a cell in microinjection. Firstly, a cell is modeled by a hyperelastic membrane and interior cytoplasm. Then, based on the fact that the equilibrium configur...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.017

    authors: Liu F,Wu D,Chen K

    更新日期:2013-08-01 00:00:00

  • Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.

    abstract::The study concerns the determination of mechanical properties of human coronary arterial walls with both experimental and constitutive modeling approaches. The research material was harvested from 18 patients (range 50-84 years). On the basis of hospital records and visual observation, each tissue sample was classifie...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.021

    authors: Jankowska MA,Bartkowiak-Jowsa M,Bedzinski R

    更新日期:2015-10-01 00:00:00

  • Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    abstract::Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.039

    authors: Ren F,Zhu W,Chu K

    更新日期:2016-07-01 00:00:00

  • Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.

    abstract::In this paper we hypothesize that the layer-separated residual stresses and mechanical properties of layer-separated thoracic aorta arteries may be dependent on arterial location of the vessel. To demonstrate any possible position differences, we measured the axial pre-stretch and opening angle and performed uniaxial ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.024

    authors: Peña JA,Martínez MA,Peña E

    更新日期:2015-10-01 00:00:00

  • On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue.

    abstract::Vascular calcification is a complex molecular process that exhibits a number of relatively characteristic morphology patterns in atherosclerotic plaques. Treatment of arterial stenosis by endovascular intervention, involving forceful circumferential expansion of the plaque, can be unpredictable in calcified lesions. T...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.001

    authors: Barrett HE,Cunnane EM,Kavanagh EG,Walsh MT

    更新日期:2016-03-01 00:00:00

  • Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating.

    abstract::This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix(™) that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix(™) was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.01.018

    authors: Yang J,Charif AC,Puskas JE,Phillips H,Shanahan KJ,Garsed J,Fleischman A,Goldman K,Roy S,Luebbers MT,Dombrowski SM,Luciano MG

    更新日期:2015-05-01 00:00:00