On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue.

Abstract:

:Vascular calcification is a complex molecular process that exhibits a number of relatively characteristic morphology patterns in atherosclerotic plaques. Treatment of arterial stenosis by endovascular intervention, involving forceful circumferential expansion of the plaque, can be unpredictable in calcified lesions. The aim of this study was to determine the mechanical stretching mechanisms and define the mechanical limits for circumferentially expanding carotid plaque lesions under the influence of distinct calcification patterns. Mechanical and structural characterisation was performed on 17 human carotid plaques acquired from patients undergoing endarterectomy procedures. The mechanical properties were determined using uniaxial extension tests that stretch the lesions to complete failure along their circumferential axis. Calcification morphology of mechanically ruptured plaque lesions was characterised using high resolution micro computed tomography imaging. Scanning electron microscopy was used to examine the mechanically induced failure sites and to identify the interface boundary conditions between calcified and non-calcified tissue. The mechanical tests produced four distinct trends in mechanical behaviour which corresponded to the calcification patterns that structurally defined each mechanical group. Each calcification pattern produced unique mechanical restraining effects on the plaque tissue stretching properties evidenced by the variation in degree of stretch to failure. Resistance to failure appears to rely on interactions between calcification and non-calcified tissue. Scanning electron microscopy examination revealed structural gradations at interface boundary conditions to facilitate the transfer of stress. This study emphasises the mechanical influence of distinct calcification configurations on plaque expansion properties and highlights the importance of pre-operative lesion characterisation to optimise treatment outcomes.

authors

Barrett HE,Cunnane EM,Kavanagh EG,Walsh MT

doi

10.1016/j.jmbbm.2015.11.001

subject

Has Abstract

pub_date

2016-03-01 00:00:00

pages

45-56

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(15)00419-1

journal_volume

56

pub_type

杂志文章
  • Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons.

    abstract::Constitutive models for biological tissue are typically formulated as a mixture of constituents and the overall response is then assembled by superposition or compatibility. This ensures the stress response of the biological tissue to be in the range of a given constitutive relationship, guaranteeing that at least one...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.04.037

    authors: Akintunde AR,Miller KS,Schiavazzi DE

    更新日期:2019-08-01 00:00:00

  • In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction.

    abstract::Tooth dentine and other bone-like materials contain carbonated hydroxyapatite nanoparticles within a network of collagen fibrils. It is widely assumed that the elastic properties of biogenic hydroxyapatites are identical to those of geological apatite. By applying hydrostatic pressure and by in situ measurements of th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.06.005

    authors: Forien JB,Fleck C,Krywka C,Zolotoyabko E,Zaslansky P

    更新日期:2015-10-01 00:00:00

  • Friction of F-actin knots.

    abstract::We use the existing data of force-extension experiments on F-actin molecules tied into knots to compute a value of 0.15 for the static friction coefficient for contact between different parts of the same molecule with itself. This estimate for protein-protein friction is relevant for the stabilization of the 273 known...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.08.005

    authors: Kirchner HO,Neukirch S

    更新日期:2010-01-01 00:00:00

  • Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    abstract:OBJECTIVES:The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. METHODS:After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens w...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.02.023

    authors: Zhang Z,Guo J,Sun Y,Tian B,Zheng X,Zhou M,He L,Zhang S

    更新日期:2018-05-01 00:00:00

  • Characterization of a new decellularized bovine pericardial biological mesh: Structural and mechanical properties.

    abstract::Implants made from naturally-derived biomaterials, also called biological meshes or biomeshes, typically derive from decellularized extracellular matrix of either animal or human tissue. Biomeshes have many biomedical applications such as ligament repair, bone and cartilage regeneration and soft tissue replacement. Bo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.12.003

    authors: Bielli A,Bernardini R,Varvaras D,Rossi P,Di Blasi G,Petrella G,Buonomo OC,Mattei M,Orlandi A

    更新日期:2018-02-01 00:00:00

  • Evaluation of the mechanical properties and degree of conversion of 3D printed splint material.

    abstract:OBJECTIVE:To evaluate the effect of post-curing method, printing layer thickness, and water storage on the mechanical properties and degree of conversion of a light-curing methacrylate based resin material (IMPRIMO® LC Splint), used for the fabrication of 3D printed occlusal splints and surgical guides. METHODS:96 bar...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104254

    authors: Perea-Lowery L,Gibreel M,Vallittu PK,Lassila L

    更新日期:2021-03-01 00:00:00

  • Heterogeneous modeling based prosthesis design with porosity and material variation.

    abstract::The work proposes the development of heterogeneous bio-implants with the aim to minimize stress shielding effect and enhance bone ingrowth. Stress shielding in the implant can be minimized by reducing the overall stiffness of the implant, which is achieved here by varying the material based on stress distribution acro...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.029

    authors: Singh SK,Tandon P

    更新日期:2018-11-01 00:00:00

  • Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices.

    abstract::Mechanical property data for brain tissue are needed to understand the biomechanics of neurological disorders and response of the brain to different mechanical and surgical forces. Most studies have characterized mechanical behavior of brain tissues over large regions or classified tissue properties for either gray or...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.026

    authors: Lee SJ,King MA,Sun J,Xie HK,Subhash G,Sarntinoranont M

    更新日期:2014-01-01 00:00:00

  • The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

    abstract::While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy stor...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.04.009

    authors: Thorpe CT,Godinho MSC,Riley GP,Birch HL,Clegg PD,Screen HRC

    更新日期:2015-12-01 00:00:00

  • In vitro experimental and numerical study on biomechanics and stability of a novel adjustable hemipelvic prosthesis.

    abstract::Hemipelvic prostheses are used to reconstruct the damaged pelvis due to bone tumors and traumas. However, biomechanical properties of the reconstructed pelvis remain unclear, causing difficulties to implant development and prediction of surgical outcome. In this study, a novel adjustable hemipelvic prosthesis for the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.10.036

    authors: Liu D,Jiang J,Wang L,Liu J,Jin Z,Gao L,Hua Y,Cai Z,Hua Z

    更新日期:2019-02-01 00:00:00

  • Evaluation of experimental, analytical, and computational methods to determine long-bone bending stiffness.

    abstract::Methods used to evaluate bone mechanical properties vary widely depending on the motivation and environment of individual researchers, clinicians, and industries. Further, the innate complexity of bone makes validation of each method difficult. Thus, the purpose of the present research was to quantify methodological e...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104253

    authors: Collins CJ,Yang B,Crenshaw TD,Ploeg HL

    更新日期:2021-03-01 00:00:00

  • Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application.

    abstract::Poly(ethylene glycol) hydrogels are currently under investigation as possible scaffold materials for bone regeneration. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of novel photopolymerised poly(ethylene glycol) dimethacrylate (PEGDMA) based hydrogels. The effect of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.004

    authors: Killion JA,Geever LM,Devine DM,Kennedy JE,Higginbotham CL

    更新日期:2011-10-01 00:00:00

  • Articular cartilage surface rupture during compression: investigating the effects of tissue hydration in relation to matrix health.

    abstract::This study aimed at investigating articular cartilage rupture by investigating the response of healthy and degenerate cartilage through altering the osmotic swelling environment of surface-intact, cartilage-on-bone specimens. The osmotic environment in healthy and degenerate bovine cartilage was varied by soaking tiss...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.018

    authors: Fick JM,Espino DM

    更新日期:2011-10-01 00:00:00

  • Development of a bite force transducer for measuring maximum voluntary bite forces between individual opposing tooth surfaces.

    abstract::Bite forces are studied in order to understand a wide range of factors pertaining to the mastication system. Various strain gauge transducers have been employed to measure bite forces, with several descriptions of these available in the literature; unfortunately, many reports provide insufficient detail to enable accu...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103846

    authors: Jansen van Vuuren L,Jansen van Vuuren WA,Broadbent JM,Duncan WJ,Waddell JN

    更新日期:2020-09-01 00:00:00

  • A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization.

    abstract::Cosserat models of cancellous bone are constructed, relying on micromechanical approaches in order to investigate microstructure-related scale effects on the macroscopic properties of bone. The derivation of the effective mechanical properties of cancellous bone considered as a cellular solid modeled as two-dimensiona...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.07.012

    authors: Goda I,Assidi M,Belouettar S,Ganghoffer JF

    更新日期:2012-12-01 00:00:00

  • Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    abstract::In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and e...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.007

    authors: Wei Q,Wang Y,Li X,Yang M,Chai W,Wang K,zhang Y

    更新日期:2016-04-01 00:00:00

  • On the tension-compression switch hypothesis in arterial mechanics.

    abstract::The tension-compression switch hypothesis for soft tissue proposes that when collagen fibres are compressed they do not contribute to the mechanical response which is then assumed to be the isotropic response of the extra-cellular matrix in which they are embedded. Such an assumption would seem reasonable. However, th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103558

    authors: Horgan CO,Murphy JG

    更新日期:2020-03-01 00:00:00

  • Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    abstract::There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.023

    authors: Sheafi EM,Tanner KE

    更新日期:2014-01-01 00:00:00

  • Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations.

    abstract::Continuous fibre distribution models can be applied to a variety of biological tissues with both charged and neutral extracellular matrices. In particular, ellipsoidal models have been used to describe the complex material behaviour of tissues such as articular cartilage and their engineered tissue equivalents. The ch...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.01.006

    authors: Nagel T,Kelly DJ

    更新日期:2012-05-01 00:00:00

  • Fibroblast populated collagen lattices exhibit opposite biophysical conditions by fibrin or hyaluronic acid supplementation.

    abstract::Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.03.042

    authors: Chopin-Doroteo M,Salgado-Curiel RM,Pérez-González J,Marín-Santibáñez BM,Krötzsch E

    更新日期:2018-06-01 00:00:00

  • Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    abstract::The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-des...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.05.006

    authors: Valero C,Navarro B,Navajas D,García-Aznar JM

    更新日期:2016-09-01 00:00:00

  • Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    abstract::Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.12.039

    authors: Ren F,Zhu W,Chu K

    更新日期:2016-07-01 00:00:00

  • Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.

    abstract::In an attempt to study the mechanical behavior of bone under indentation, methods of analyses and experimental validations have been developed, with a selected test material. The test material chosen is from an equine cortical bone. Stress-strain relationships are first obtained from conventional mechanical property t...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.11.020

    authors: Hoffseth K,Randall C,Hansma P,Yang HT

    更新日期:2015-02-01 00:00:00

  • An analytical solution for the stress state at stent-coating interfaces.

    abstract::In this paper an analytical solution for the stress state in a coated stent is presented, with a particular focus on the interface stresses between the coating and stent. As a first step a simplified stent architecture consisting of a bi-layered composite elastic arch is considered. The variations of normal and shear ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.009

    authors: Parry G,McGarry P

    更新日期:2012-06-01 00:00:00

  • Strain-induced microstructural rearrangement in ultra-high molecular weight polyethylene for hip joints: A comparison between conventional and vitamin E-infused highly-crosslinked liners.

    abstract::Infusion of vitamin E (α-tocopherol) in highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) liners has been conceived to achieve superior oxidation stability while preserving enhanced mechanical properties as compared to post-irradiation remelted liners. However, the presence of an antioxidant in the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.12.009

    authors: Takahashi Y,Yamamoto K,Shishido T,Masaoka T,Tateiwa T,Puppulin L,Pezzotti G

    更新日期:2014-03-01 00:00:00

  • Reconstruction of medial patello-femoral ligament: Comparison of two surgical techniques.

    abstract::The medial patello-femoral ligament is considered the most important passive patellar stabilizer and its proper functionality is essential for the patello-femoral joint stability. In this work, 18 human knees were randomly divided into two groups and reconstructed through two different surgical techniques: the "Throug...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.02.009

    authors: Criscenti G,De Maria C,Sebastiani E,Tei M,Placella G,Speziali A,Vozzi G,Cerulli G

    更新日期:2016-06-01 00:00:00

  • A multiparametric evaluation of post-restored teeth with simulated bone loss.

    abstract::Endodontically-treated teeth are prone to fracture due to loss of tooth structure and altered mechanical behaviors. The stability and rigidity of post-restored teeth, particularly in cases involving periodontal destruction, has not been adequately investigated. This study examined the influence of post material on tee...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.10.012

    authors: Ni CW,Chang CH,Chen TY,Chuang SF

    更新日期:2011-04-01 00:00:00

  • Effect of size and dimensional tolerance of reverse total shoulder arthroplasty on wear: An in-silico study.

    abstract::Although huge research efforts have been devoted to wear analysis of ultra-high molecular weight polyethylene (UHMWPE) in hip and knee implants, shoulder prostheses have been studied only marginally. Recently, the authors presented a numerical wear model of reverse total shoulder arthroplasties (RTSAs), and its applic...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.03.033

    authors: Mattei L,Di Puccio F,Joyce TJ,Ciulli E

    更新日期:2016-08-01 00:00:00

  • Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    abstract::Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platele...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.05.010

    authors: Murr LE,Amato KN,Li SJ,Tian YX,Cheng XY,Gaytan SM,Martinez E,Shindo PW,Medina F,Wicker RB

    更新日期:2011-10-01 00:00:00

  • Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation.

    abstract::As natural flexible dermal armor, pangolin scales provide effective protection against predatory threats and possess other notable properties such as anti-adhesion and wear-resistance. In this study, the structure, mechanical properties, deformation and damage behaviors of pangolin scales were systematically investiga...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.013

    authors: Liu ZQ,Jiao D,Weng ZY,Zhang ZF

    更新日期:2016-03-01 00:00:00