A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.

Abstract:

:This study is devoted to the development of a non-linear anisotropic model for the human periodontal ligament (PDL). A thorough knowledge of the behaviour of the PDL is vital in understanding the mechanics of orthodontic tooth mobility, soft tissue response and proposed treatment plans. There is considerable evidence that the deformation of the PDL is the key factor determining the orthodontic tooth movement. The paper focuses on the biomechanical aspect of the behaviour of the PDL. In terms of continuous mechanics, the PDL may be treated as an anisotropic poro-visco-hyperelastic fibre-reinforced compressible material which is subject to large deformations and has an essentially non-linear behaviour. Furthermore, there are issues related to the non-linear tooth and PDL geometry. A new constitutive model for the PDL is proposed. The macroscopic continuum approach is used. The model is based on the non-linear large deformation theory, involving the Lagrangian description. The material is assumed to be compressible, visco-hyperelastic and transversely isotropic. A free-energy function is suggested that incorporates the properties. It also takes into account that the PDL behaves differently in tension and compression. The free-energy function and the associated constitutive equations involve several material parameters, which are to be evaluated from experimental strain-stress data available from the literature and the tooth movement experiments conducted by our team using novel optical motion analysis techniques.

authors

Zhurov AI,Limbert G,Aeschlimann DP,Middleton J

doi

10.1080/13639080701314894

subject

Has Abstract

pub_date

2007-06-01 00:00:00

pages

223-35

issue

3

eissn

1025-5842

issn

1476-8259

pii

779053885

journal_volume

10

pub_type

杂志文章
  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Multi-objective reliability based design optimization using Kriging surrogate model for cementless hip prosthesis.

    abstract::Design optimization for cementless hip prosthesis signifies one of the key topics of research to improve its performances. However, majority of the studies have not considered the presence of uncertainties while it has been shown that a deterministic optimization leads to an unreliable design. In this paper, a multi-o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1768247

    authors: Dammak K,El Hami A

    更新日期:2020-09-01 00:00:00

  • Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    abstract::Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.951926

    authors: Karakolis T,Callaghan JP

    更新日期:2015-01-01 00:00:00

  • The Biomechanical Effects of Sagittal Split Ramus Osteotomy on Temporomandibular Joint.

    abstract::The aim of this study was to evaluate the stress distributions and deformations of the temporomandibular joint (TMJ) during different periods before and after sagittal split ramus osteotomy (SSRO). A three-dimensional finite element model of the mandible and TMJ was established, based on the preoperative CT of a patie...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1504034

    authors: Liu Z,Shu J,Zhang Y,Fan Y

    更新日期:2018-08-01 00:00:00

  • Quantification of soft tissue balance in total knee arthroplasty using finite element analysis.

    abstract::Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be check...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.765409

    authors: Oh KJ,Park WM,Kim K,Kim YH

    更新日期:2014-01-01 00:00:00

  • A coupled biventricular finite element and lumped-parameter circulatory system model of heart failure.

    abstract::Numerical modelling of the cardiovascular system is becoming an important tool for assessing the influence of heart disease and treatment therapies. In the current study, we present an approach for modelling the interaction between the heart and the circulatory system. This was accomplished by creating animal-specific...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.641121

    authors: Wenk JF,Ge L,Zhang Z,Soleimani M,Potter DD,Wallace AW,Tseng E,Ratcliffe MB,Guccione JM

    更新日期:2013-01-01 00:00:00

  • Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    abstract::Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consist...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.887698

    authors: Caballero AD,Laín S

    更新日期:2015-08-01 00:00:00

  • Mechanical variables affecting balloon kyphoplasty outcome--a finite element study.

    abstract::It is still unclear how a vertebral fracture should be stabilised and strengthened without endangering the remaining intact bone of the augmented vertebra or the adjacent vertebrae. Numerical modelling may provide insight. To date, however, few finite element (FE) spine models have been developed which are both multi-...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.522183

    authors: Dabirrahmani D,Becker S,Hogg M,Appleyard R,Baroud G,Gillies M

    更新日期:2012-01-01 00:00:00

  • Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms.

    abstract::Rupture of intracranial saccular aneurysms continues to result in significant morbidity and mortality. Although it has long been thought that biomechanical factors play key roles in the genesis, growth, and rupture of these lesions, few analysis have employed realistic descriptions of the geometries and material prope...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/01495739708936698

    authors: Shah AD,Harris JL,Kyriacou SK,Humphrey JD

    更新日期:1998-01-01 00:00:00

  • Feature selection based on a fuzzy complementary criterion: application to gait recognition using ground reaction forces.

    abstract::An efficient wavelet-based feature selection (FS) method is proposed in this paper for subject recognition using ground reaction force measurements. Our approach relies on a local fuzzy evaluation measure with respect to patterns that reveal the adequacy of data coverage for each feature. Furthermore, FS is driven by ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554408

    authors: Moustakidis SP,Theocharis JB,Giakas G

    更新日期:2012-01-01 00:00:00

  • A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.

    abstract::The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817405

    authors: Hainisch R,Kranzl A,Lin YC,Pandy MG,Gfoehler M

    更新日期:2020-09-17 00:00:00

  • Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.

    abstract::To analyze the biomechanical effect of syndesmotic screw through three and four cortices, a total of 12 finite element models simulating healthy ankles, tibiofibular syndesmosis injured ankles, and post-operative ankles by screw fixations through three or four cortices were built. A set of biomechanical data were obta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1472770

    authors: Li H,Chen Y,Qiang M,Zhang K,Jiang Y,Zhang Y,Jia X

    更新日期:2018-04-01 00:00:00

  • Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis.

    abstract::Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1584795

    authors: Ghaneei M,Ekyalimpa R,Westover L,Parent EC,Adeeb S

    更新日期:2019-05-01 00:00:00

  • Foot internal stress distribution during impact in barefoot running as function of the strike pattern.

    abstract::The aim of the present study is to examine the impact absorption mechanism of the foot for different strike patterns (rearfoot, midfoot and forefoot) using a continuum mechanics approach. A three-dimensional finite element model of the foot was employed to estimate the stress distribution in the foot at the moment of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1480760

    authors: Morales-Orcajo E,Becerro de Bengoa Vallejo R,Losa Iglesias M,Bayod J,Barbosa de Las Casas E

    更新日期:2018-05-01 00:00:00

  • Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture.

    abstract::The effect on the signal amplitude of ultrasonic waves propagating along cortical bone plates was modelled using a 2D Finite Difference code. Different healing stages, represented by modified fracture geometries were introduced to the plate model. A simple transverse and oblique fracture filled with water was introduc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701502387

    authors: Dodd SP,Miles AW,Gheduzzi S,Humphrey VF,Cunningham JL

    更新日期:2007-10-01 00:00:00

  • A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre.

    abstract::This paper introduces a 'hypothesis about the growth pattern of the secondary ossification centre (SOC)', whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular fac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.484810

    authors: Garzón-Alvarado DA,Peinado Cortés LM,Cárdenas Sandoval RP

    更新日期:2011-01-01 00:00:00

  • Kinematic analysis of over-determinate biomechanical systems.

    abstract::In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the over-determinate case. This is accomplished by introducing a constrained optimisati...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459412

    authors: Andersen MS,Damsgaard M,Rasmussen J

    更新日期:2009-08-01 00:00:00

  • Medical image registration using fuzzy theory.

    abstract::Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical ima...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.557372

    authors: Pan M,Tang J,Xiong Q

    更新日期:2012-01-01 00:00:00

  • Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    abstract::Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-sli...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1055257

    authors: Ali N,Javid K,Sajid M,Anwar Bég O

    更新日期:2016-01-01 00:00:00

  • How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?

    abstract::Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.627682

    authors: Loerakker S,Solis LR,Bader DL,Baaijens FP,Mushahwar VK,Oomens CW

    更新日期:2013-01-01 00:00:00

  • Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport.

    abstract::This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith-Simmons equations governing molecular-motor-assisted transport in neurons. It ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903505154

    authors: Kuznetsov AV

    更新日期:2010-12-01 00:00:00

  • Development and validation of a finite element model of a small female pedestrian.

    abstract::Pedestrians are the most vulnerable road user and represent about 23% of the road traffic deaths in the world. A finite element (FE) model corresponding to a 5th percentile female pedestrian (F05-PS) was developed by morphing the Global Human Body Models Consortium (GHBMC) 50th percentile male pedestrian (M50-PS) mode...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1801652

    authors: Pak W,Meng Y,Schap J,Koya B,Gayzik FS,Untaroiu CD

    更新日期:2020-12-01 00:00:00

  • Interaction of microstructure and microcrack growth in cortical bone: a finite element study.

    abstract::Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behaviour in cortical bone. This study aims to develop a computational mechanics approach to evaluate microscale fracture mechanisms in bone. In this study, finite element models based o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.607444

    authors: Mischinski S,Ural A

    更新日期:2013-01-01 00:00:00

  • A finite element comparison between the mechanical behaviour of rigid and resilient oral implants with respect to immediate loading.

    abstract::In this paper, a qualitative comparison between two types of dental implants with respect to their behaviour under immediate loading is presented. This analysis has been carried out using the finite element method. Since micromotions (and not the load) are responsible of the appearance of a fibrous interface avoiding ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500141593

    authors: Pérez del Palomar A,Arruga A,Cegoñino J,Doblaré M

    更新日期:2005-02-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Image-guided surgery: from X-rays to virtual reality.

    abstract::Since the discovery of X-rays, medical imaging has played a major role in the guidance of surgical procedures. While medical imaging began with simple X-ray plates to indicate the presence of foreign objects within the human body, the advent of the computer has been a major factor in the recent development of this fie...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840008907997

    authors: Peters TM

    更新日期:2000-01-01 00:00:00

  • Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty.

    abstract::The goal of this study was to define the effect on hip contact forces of including subject-specific moment generating capacity in the musculoskeletal model by scaling isometric muscle strength and by including geometrical information in control subjects, hip osteoarthritis and total hip arthroplasty patients. Scaling ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1181174

    authors: Wesseling M,De Groote F,Meyer C,Corten K,Simon JP,Desloovere K,Jonkers I

    更新日期:2016-11-01 00:00:00

  • Muscle moment-arms: a key element in muscle-force estimation.

    abstract::A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependenc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.818666

    authors: Ingram D,Engelhardt C,Farron A,Terrier A,Müllhaupt P

    更新日期:2015-01-01 00:00:00

  • The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis.

    abstract::The labrum contributes to passive glenohumeral joint stability. Cadaveric studies have demonstrated that this has position and load dependency, which has not been quantified under physiological loads. This study aims to validate subject-specific finite element (FE) models against in vitro measurements of joint stabili...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1399262

    authors: Klemt C,Nolte D,Grigoriadis G,Di Federico E,Reilly P,Bull AMJ

    更新日期:2017-11-01 00:00:00

  • Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem.

    abstract::Human brain tissue is complex and multi-component in nature. It consists of an anisotropic hyperelastic solid material composed of tissue cells and blood vessel walls. Brain tissue is permeated by two viscous pore liquids, the interstitial fluid and the blood. Both liquids are mobile within the tissue and exhibit a si...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.853754

    authors: Ehlers W,Wagner A

    更新日期:2015-01-01 00:00:00