The Electrophysiological Determinants of Corticospinal Motor Neuron Vulnerability in ALS.

Abstract:

:The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiological determinants of corticospinal motor neuron (CSMN, a.k.a UMN in mice) vulnerability, we investigated the motor cortex of hSOD1G93A mice at P30 (postnatal day 30), a presymptomatic time point. Glutamate uncaging by laser scanning photostimulation (LSPS) revealed altered dynamics especially within the inhibitory circuitry and more specifically in L2/3 of the motor cortex, whereas the excitatory microcircuits were unchanged. Observed microcircuitry changes were specific to CSMN in the motor column. Electrophysiological evaluation of the intrinsic properties in response to the microcircuit changes, as well as the exon microarray expression profiles of CSMN isolated from hSOD1G93A and healthy mice at P30, revealed the presence of a very dynamic set of events, ultimately directed to establish, maintain and retain the balance at this early stage. Also, the expression profile of key voltage-gated potassium and sodium channel subunits as well as of the inhibitory GABA receptor subunits and modulatory proteins began to suggest the challenges CSMN face at this early age. Since neurodegeneration is initiated when neurons can no longer maintain balance, the complex cellular events that occur at this critical time point help reveal how CSMN try to cope with the challenges of disease manifestation. This information is critically important for the proper modulation of UMNs and for developing effective treatment strategies.

journal_name

Front Mol Neurosci

authors

Jara JH,Sheets PL,Nigro MJ,Perić M,Brooks C,Heller DB,Martina M,Andjus PR,Ozdinler PH

doi

10.3389/fnmol.2020.00073

subject

Has Abstract

pub_date

2020-05-19 00:00:00

pages

73

issn

1662-5099

journal_volume

13

pub_type

杂志文章
  • Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion.

    abstract::Mitochondria are key organelles in regulating the metabolic state of a cell. In the brain, mitochondrial oxidative metabolism is the prevailing mechanism for neurons to generate ATP. While it is firmly established that neuronal function is highly dependent on mitochondrial metabolism, it is less well-understood how as...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00040

    authors: Fiebig C,Keiner S,Ebert B,Schäffner I,Jagasia R,Lie DC,Beckervordersandforth R

    更新日期:2019-02-22 00:00:00

  • The ubiquitin proteasome system in glia and its role in neurodegenerative diseases.

    abstract::The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00073

    authors: Jansen AH,Reits EA,Hol EM

    更新日期:2014-08-08 00:00:00

  • The Regulatory Role of Long Noncoding RNAs in Different Brain Cell Types Involved in Ischemic Stroke.

    abstract::Stroke results in high morbidity and high mortality worldwide, with ischemic stroke accounting for 80% to 85%. As effective treatments for ischemic stroke remain limited because of the narrow therapeutic time window, a better understanding of the pathologic mechanism and new therapeutic intervention targets are needed...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00061

    authors: Chen R,Xu X,Huang L,Zhong W,Cui L

    更新日期:2019-03-22 00:00:00

  • The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases.

    abstract::Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA) are two motoneuron diseases (MNDs) characterized by aberrant protein behavior in affected cells. In familial ALS (fALS) and in SBMA specific gene mutations lead to the production of neurotoxic proteins or peptides prone to misfold, which...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00176

    authors: Rusmini P,Cristofani R,Galbiati M,Cicardi ME,Meroni M,Ferrari V,Vezzoli G,Tedesco B,Messi E,Piccolella M,Carra S,Crippa V,Poletti A

    更新日期:2017-06-21 00:00:00

  • Re-innervation of the Denervated Dentate Gyrus by Sprouting Associational and Commissural Mossy Cell Axons in Organotypic Tissue Cultures of Entorhinal Cortex and Hippocampus.

    abstract::Collateral sprouting of surviving axons contributes to the synaptic reorganization after brain injury. To study this clinically relevant phenomenon, we used complex organotypic tissue cultures of mouse entorhinal cortex (EC) and hippocampus (H). Single EC-H cultures were generated to analyze associational sprouting, a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00270

    authors: Del Turco D,Paul MH,Beeg Moreno VJ,Hildebrandt-Einfeldt L,Deller T

    更新日期:2019-11-12 00:00:00

  • The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice.

    abstract::Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. B...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00021

    authors: He Z,Han S,Zhu H,Hu X,Li X,Hou C,Wu C,Xie Q,Li N,Du X,Ni J,Liu Q

    更新日期:2020-03-10 00:00:00

  • Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia.

    abstract::Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominan...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.612439

    authors: Lian L,Zhang Y,Liu L,Yang L,Cai Y,Zhang J,Xu S

    更新日期:2021-01-07 00:00:00

  • Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation.

    abstract::The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and vir...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00317

    authors: Quarta S,Camprubí-Robles M,Schweigreiter R,Matusica D,Haberberger RV,Proia RL,Bandtlow CE,Ferrer-Montiel A,Kress M

    更新日期:2017-10-10 00:00:00

  • Two Vanilloid Ligand Bindings Per Channel Are Required to Transduce Capsaicin-Activating Stimuli.

    abstract::The tetrameric capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) in mammals has evolved the capability to integrate pain signal arising from harmful temperature and chemical irritants. The four repetitions of TRPV1 subunits result in an ion channel with excellent pain sensitivity, allowing this ionot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00302

    authors: Liu TY,Chu Y,Mei HR,Chang D,Chuang HH

    更新日期:2020-01-09 00:00:00

  • Uncoupling the Trade-Off between Somatic Proteostasis and Reproduction in Caenorhabditis elegans Models of Polyglutamine Diseases.

    abstract::Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link betwe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00101

    authors: Shemesh N,Shai N,Meshnik L,Katalan R,Ben-Zvi A

    更新日期:2017-04-20 00:00:00

  • Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation.

    abstract::The ubiquitous metabolic intermediary and nucleoside adenosine is a "master regulator" in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex hom...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00099

    authors: Kiese K,Jablonski J,Boison D,Kobow K

    更新日期:2016-10-20 00:00:00

  • Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration.

    abstract::Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both en...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00236

    authors: Mittal R,Nguyen D,Patel AP,Debs LH,Mittal J,Yan D,Eshraghi AA,Van De Water TR,Liu XZ

    更新日期:2017-07-31 00:00:00

  • Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells.

    abstract::Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of ca...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00107

    authors: Angeletti F,Fossati G,Pattarozzi A,Würth R,Solari A,Daga A,Masiello I,Barbieri F,Florio T,Comincini S

    更新日期:2016-10-27 00:00:00

  • Microglial Lectins in Health and Neurological Diseases.

    abstract::Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00158

    authors: Siew JJ,Chern Y

    更新日期:2018-05-14 00:00:00

  • The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage.

    abstract::Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Dros...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00097

    authors: Liu Y,Luo J,Nässel DR

    更新日期:2016-10-13 00:00:00

  • Tcf12 Is Involved in Early Cell-Fate Determination and Subset Specification of Midbrain Dopamine Neurons.

    abstract::The basic helix-loop-helix (bHLH) protein family has previously been shown to be involved in the development of mesodiencephalic dopaminergic (mdDA) neurons in the murine midbrain. Specifically, Ngn2 and Mash1 are known to have a role in the specification of neural progenitors in the ventricular zone (VZ) of the midbr...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00353

    authors: Mesman S,Smidt MP

    更新日期:2017-11-01 00:00:00

  • PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway.

    abstract::Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a mar...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00403

    authors: Yang Q,Zhou Y,Yin H,Li H,Zhou M,Sun G,Cao Z,Man R,Wang H,Li J

    更新日期:2018-11-12 00:00:00

  • Corrigendum: Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    abstract::[This corrects the article on p. 116 in vol. 9, PMID: 27867348.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2016.00154

    authors: Jackson KL,Dayton RD,Deverman BE,Klein RL

    更新日期:2016-12-22 00:00:00

  • Kainate Receptors: Role in Epilepsy.

    abstract::Kainate (KA) is a potent neurotoxin that has been widely used experimentally to induce acute brain seizures and, after repetitive treatments, as a chronic model of temporal lobe epilepsy (TLE), with similar features to those observed in human patients with TLE. However, whether KA activates KA receptors (KARs) as an a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00217

    authors: Falcón-Moya R,Sihra TS,Rodríguez-Moreno A

    更新日期:2018-06-22 00:00:00

  • Ubiquitin pathways in neurodegenerative disease.

    abstract::Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multip...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00063

    authors: Atkin G,Paulson H

    更新日期:2014-07-08 00:00:00

  • Kv4 Channels Underlie the Subthreshold-Operating A-type K-current in Nociceptive Dorsal Root Ganglion Neurons.

    abstract::The dorsal root ganglion (DRG) contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling. Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K(+) channels; however, the molecular correlate of the co...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.02.003.2009

    authors: Phuket TR,Covarrubias M

    更新日期:2009-07-07 00:00:00

  • Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

    abstract::Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechan...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00064

    authors: Bailey ZS,Grinter MB,VandeVord PJ

    更新日期:2016-08-08 00:00:00

  • Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation.

    abstract::It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradie...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00400

    authors: Bai W,Zhou YG

    更新日期:2017-12-05 00:00:00

  • The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?

    abstract::The neuromuscular junction (NMJ) is the chemical synapse connecting motor neurons and skeletal muscle fibers. NMJs allow all voluntary movements, and ensure vital functions like breathing. Changes in the structure and function of NMJs are hallmarks of numerous pathological conditions that affect muscle function includ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00162

    authors: Castets P,Ham DJ,Rüegg MA

    更新日期:2020-08-28 00:00:00

  • Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma.

    abstract::Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. H...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00156

    authors: Kasim M,Heß V,Scholz H,Persson PB,Fähling M

    更新日期:2016-12-21 00:00:00

  • Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy.

    abstract::Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00106

    authors: Dadsetan S,Balzano T,Forteza J,Cabrera-Pastor A,Taoro-Gonzalez L,Hernandez-Rabaza V,Gil-Perotín S,Cubas-Núñez L,García-Verdugo JM,Agusti A,Llansola M,Felipo V

    更新日期:2016-11-02 00:00:00

  • N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors.

    abstract::N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00188

    authors: Skrenkova K,Lee S,Lichnerova K,Kaniakova M,Hansikova H,Zapotocky M,Suh YH,Horak M

    更新日期:2018-06-04 00:00:00

  • Reduction of Silent Information Regulator 1 Activates Interleukin-33/ST2 Signaling and Contributes to Neuropathic Pain Induced by Spared Nerve Injury in Rats.

    abstract::Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as key factors in inflammatory diseases. Moreover, accumulating evidence has suggested that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory cascade. SIRT1 has been shown to suppress the expression...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00017

    authors: Zeng Y,Shi Y,Zhan H,Liu W,Cai G,Zhong H,Wang Y,Chen S,Huang S,Wu W

    更新日期:2020-02-12 00:00:00

  • Identification of lncRNAs Associated With Neuroblastoma in Cross-Sectional Databases: Potential Biomarkers.

    abstract::Long non-coding RNAs (lncRNAs) have emerged as an important regulatory control in biological systems. Though the field of lncRNA has been progressing rapidly, a complete understanding of the role of lncRNAs in neuroblastoma pathogenesis is still lacking. To identify the abrogated lncRNAs in primary neuroblastoma and i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00293

    authors: Prajapati B,Fatma M,Fatima M,Khan MT,Sinha S,Seth PK

    更新日期:2019-12-12 00:00:00

  • Structure of Heteropentameric GABAA Receptors and Receptor-Anchoring Properties of Gephyrin.

    abstract::γ-Aminobutyric acid type A receptors (GABAARs) mediate the majority of fast synaptic inhibition in the central nervous system (CNS). GABAARs belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGIC) and are assembled from 19 different subunits. As dysfunctional GABAergic neurotransmission mani...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00191

    authors: Kasaragod VB,Schindelin H

    更新日期:2019-08-07 00:00:00