Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy.

Abstract:

:Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and IL-10 levels in serum. Infliximab also prevents neuroinflammation, reduces microglial activation, translocates NF-kB into nucleoli and normalizes TNF-a and IL-1b content in hippocampus. This was associated with normalization of AMPA receptors membrane expression in hippocampus and of spatial learning and memory. The results suggest that peripheral inflammation contributes to spatial learning impairment in PCS rats. Treatment with anti-TNF-a could be a new therapeutic approach to improve cognitive function in patients with HE.

journal_name

Front Mol Neurosci

authors

Dadsetan S,Balzano T,Forteza J,Cabrera-Pastor A,Taoro-Gonzalez L,Hernandez-Rabaza V,Gil-Perotín S,Cubas-Núñez L,García-Verdugo JM,Agusti A,Llansola M,Felipo V

doi

10.3389/fnmol.2016.00106

subject

Has Abstract

pub_date

2016-11-02 00:00:00

pages

106

issn

1662-5099

journal_volume

9

pub_type

杂志文章
  • Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    abstract::Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00091

    authors: Haass-Koffler CL,Bartlett SE

    更新日期:2012-09-06 00:00:00

  • Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function.

    abstract::Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00369

    authors: Lizen B,Moens C,Mouheiche J,Sacré T,Ahn MT,Jeannotte L,Salti A,Gofflot F

    更新日期:2017-11-15 00:00:00

  • Regulation of intraocular pressure by soluble and membrane guanylate cyclases and their role in glaucoma.

    abstract::Glaucoma is a progressive optic neuropathy characterized by visual field defects that ultimately lead to irreversible blindness (Alward, 2000; Anderson et al., 2006). By the year 2020, an estimated 80 million people will have glaucoma, 11 million of which will be bilaterally blind. Primary open-angle glaucoma (POAG) i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00038

    authors: Buys ES,Potter LR,Pasquale LR,Ksander BR

    更新日期:2014-05-19 00:00:00

  • Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs.

    abstract::Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the unde...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00380

    authors: Comhair J,Devoght J,Morelli G,Harvey RJ,Briz V,Borrie SC,Bagni C,Rigo JM,Schiffmann SN,Gall D,Brône B,Molchanova SM

    更新日期:2018-10-15 00:00:00

  • Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204.

    abstract::The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical foldi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00031

    authors: Venø MT,Venø ST,Rehberg K,van Asperen JV,Clausen BH,Holm IE,Pasterkamp RJ,Finsen B,Kjems J

    更新日期:2017-02-09 00:00:00

  • The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency.

    abstract::Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00322

    authors: Janzen D,Schaefer N,Delto C,Schindelin H,Villmann C

    更新日期:2017-10-09 00:00:00

  • Corrigendum: Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00099.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2019.00149

    authors: Yadav SC,Tetenborg S,Dedek K

    更新日期:2019-06-12 00:00:00

  • The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage.

    abstract::Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Dros...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00097

    authors: Liu Y,Luo J,Nässel DR

    更新日期:2016-10-13 00:00:00

  • Uncoupling the Trade-Off between Somatic Proteostasis and Reproduction in Caenorhabditis elegans Models of Polyglutamine Diseases.

    abstract::Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link betwe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00101

    authors: Shemesh N,Shai N,Meshnik L,Katalan R,Ben-Zvi A

    更新日期:2017-04-20 00:00:00

  • Corrigendum: Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    abstract::[This corrects the article on p. 116 in vol. 9, PMID: 27867348.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2016.00154

    authors: Jackson KL,Dayton RD,Deverman BE,Klein RL

    更新日期:2016-12-22 00:00:00

  • Roles of eIF2α kinases in the pathogenesis of Alzheimer's disease.

    abstract::Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of eukaryotic initiation factor-2α (eIF2α). Evidence is accumulating that persistent eIF2α phosphorylation at Ser51 through prolonged overactivation of regulatory kinases occurs in neurodegenerative diseases such as Alzhe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00022

    authors: Ohno M

    更新日期:2014-04-16 00:00:00

  • Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis.

    abstract::Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00433

    authors: Henriques A,Croixmarie V,Bouscary A,Mosbach A,Keime C,Boursier-Neyret C,Walter B,Spedding M,Loeffler JP

    更新日期:2018-01-04 00:00:00

  • Mapping local structural perturbations in the native state of stefin B (cystatin B) under amyloid forming conditions.

    abstract::Unlike a number of amyloid-forming proteins, stefins, and in particular stefin B (cystatin B) form amyloids under conditions where the native state predominates. In order to trigger oligomerization processes, the stability of the protein needs to be compromised, favoring structural re-arrangement however, accelerating...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00094

    authors: Paramore R,Morgan GJ,Davis PJ,Sharma CA,Hounslow A,Taler-Verčič A,Zerovnik E,Waltho JP,Cliff MJ,Staniforth RA

    更新日期:2012-10-12 00:00:00

  • Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses.

    abstract::The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to al...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00010

    authors: Delgado JY,Nall D,Selvin PR

    更新日期:2020-03-13 00:00:00

  • Visualization of Alzheimer's Disease Related α-/β-/γ-Secretase Ternary Complex by Bimolecular Fluorescence Complementation Based Fluorescence Resonance Energy Transfer.

    abstract::The competitive ectodomain shedding of amyloid-β precursor protein (APP) by α-secretase and β-secretase, and the subsequent regulated intramembrane proteolysis by γ-secretase are the key processes in amyloid-β peptides (Aβ) generation. Previous studies indicate that secretases form binary complex and the interactions ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00431

    authors: Wang X,Pei G

    更新日期:2018-11-27 00:00:00

  • Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down.

    abstract::Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hA...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00001

    authors: Benko E,Winkelmann A,Meier JC,Persson PB,Scholz H,Fähling M

    更新日期:2011-02-07 00:00:00

  • Short-Term Environmental Stimulation Spatiotemporally Modulates Specific Serotonin Receptor Gene Expression and Behavioral Pharmacology in a Sexually Dimorphic Manner in Huntington's Disease Transgenic Mice.

    abstract::Huntington's disease (HD) is a neurodegenerative disorder caused by a tandem repeat mutation encoding an expanded polyglutamine tract in the huntingtin protein, which leads to cognitive, psychiatric and motor dysfunction. Exposure to environmental enrichment (EE), which enhances levels of cognitive stimulation and phy...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00433

    authors: Zajac MS,Renoir T,Perreau VM,Li S,Adams W,van den Buuse M,Hannan AJ

    更新日期:2018-12-10 00:00:00

  • From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development.

    abstract::Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural c...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00062

    authors: Goyal R,Spencer KA,Borodinsky LN

    更新日期:2020-04-24 00:00:00

  • Tcf12 Is Involved in Early Cell-Fate Determination and Subset Specification of Midbrain Dopamine Neurons.

    abstract::The basic helix-loop-helix (bHLH) protein family has previously been shown to be involved in the development of mesodiencephalic dopaminergic (mdDA) neurons in the murine midbrain. Specifically, Ngn2 and Mash1 are known to have a role in the specification of neural progenitors in the ventricular zone (VZ) of the midbr...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00353

    authors: Mesman S,Smidt MP

    更新日期:2017-11-01 00:00:00

  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases.

    abstract::Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific path...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00141

    authors: Chang X,Wang J,Jiang H,Shi L,Xie J

    更新日期:2019-06-05 00:00:00

  • Neuroblastoma-A Neural Crest Derived Embryonal Malignancy.

    abstract::Neuroblastoma is a neural crest derived malignancy of the peripheral nervous system and is the most common and deadliest tumor of infancy. It is characterized by clinical heterogeneity with a disease spectrum ranging from spontaneous regression without any medical intervention to treatment resistant tumors with metast...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00009

    authors: Johnsen JI,Dyberg C,Wickström M

    更新日期:2019-01-29 00:00:00

  • Hypoxic Preconditioning Maintains GLT-1 Against Transient Global Cerebral Ischemia Through Upregulating Cx43 and Inhibiting c-Src.

    abstract::Transient global cerebral ischemia (tGCI) causes excessive release of glutamate from neurons. Astrocytic glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) together play a predominant role in maintaining glutamate at normal extracellular concentrations. Though our previous studies reported the alleviation o...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00344

    authors: Li K,Zhou H,Zhan L,Shi Z,Sun W,Liu D,Liu L,Liang D,Tan Y,Xu W,Xu E

    更新日期:2018-10-01 00:00:00

  • Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function.

    abstract::Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To addres...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00379

    authors: Zorzi V,Paciello F,Ziraldo G,Peres C,Mazzarda F,Nardin C,Pasquini M,Chiani F,Raspa M,Scavizzi F,Carrer A,Crispino G,Ciubotaru CD,Monyer H,Fetoni AR,M Salvatore A,Mammano F

    更新日期:2017-11-28 00:00:00

  • Targeting Amyloidogenic Processing of APP in Alzheimer's Disease.

    abstract::Alzheimer's disease (AD) is the most common type of senile dementia, characterized by neurofibrillary tangle and amyloid plaque in brain pathology. Major efforts in AD drug were devoted to the interference with the production and accumulation of amyloid-β peptide (Aβ), which plays a causal role in the pathogenesis of ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00137

    authors: Zhao J,Liu X,Xia W,Zhang Y,Wang C

    更新日期:2020-08-04 00:00:00

  • Ubiquitin pathways in neurodegenerative disease.

    abstract::Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multip...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00063

    authors: Atkin G,Paulson H

    更新日期:2014-07-08 00:00:00

  • Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models.

    abstract::Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium's effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions incl...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00297

    authors: Kerr F,Bjedov I,Sofola-Adesakin O

    更新日期:2018-08-28 00:00:00

  • Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation.

    abstract::The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and vir...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00317

    authors: Quarta S,Camprubí-Robles M,Schweigreiter R,Matusica D,Haberberger RV,Proia RL,Bandtlow CE,Ferrer-Montiel A,Kress M

    更新日期:2017-10-10 00:00:00

  • Long Non-coding RNA TUG1 Sponges Mir-145a-5p to Regulate Microglial Polarization After Oxygen-Glucose Deprivation.

    abstract::Microglia plays a critical role in neuroinflammation after ischemic stroke by releasing diverse inflammatory cytokines. Long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is widely expressed in adult brain and has been reported to participate in multiple biological processes associated with nervous system d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00215

    authors: Wang H,Liao S,Li H,Chen Y,Yu J

    更新日期:2019-09-10 00:00:00

  • Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study.

    abstract::The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00008

    authors: Szabolcsi V,Albisetti GW,Celio MR

    更新日期:2017-01-23 00:00:00

  • Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation.

    abstract::Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neu...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00050

    authors: Müller-Dahlhaus F,Vlachos A

    更新日期:2013-12-17 00:00:00