Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models.

Abstract:

:Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium's effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions including Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases. A narrow therapeutic window for these effects, however, has led to concerted efforts to understand the molecular mechanisms of lithium action in the brain, in order to develop more selective treatments that harness its neuroprotective potential whilst limiting contraindications. Animal models have proven pivotal in these studies, with lithium displaying advantageous effects on behavior across species, including worms (C. elegans), zebrafish (Danio rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to genetic manipulation, functional genomic analyses in these model organisms have provided evidence for the main molecular determinants of lithium action, including inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3). Accumulating pre-clinical evidence has indeed provided a basis for research into the therapeutic use of lithium for the treatment of dementia, an area of medical priority due to its increasing global impact and lack of disease-modifying drugs. Although lithium has been extensively described to prevent AD-associated amyloid and tau pathologies, this review article will focus on generic mechanisms by which lithium preserves neuronal function and improves memory in animal models of dementia. Of these, evidence from worms, flies and mice points to GSK-3 as the most robust mediator of lithium's neuro-protective effect, but it's interaction with downstream pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear factor-κB (NFκB), have identified multiple targets for development of drugs which harness lithium's neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-inflammatory and protein homeostasis properties, in addition to more potent and selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional therapy to combat the complex molecular pathology of dementia. Animal studies will be vital, however, for comparative analyses to determine which of these defense mechanisms are most required to slow-down cognitive decline in dementia, and whether combination therapies can synergize systems to exploit lithium's neuro-protective power while avoiding deleterious toxicity.

journal_name

Front Mol Neurosci

authors

Kerr F,Bjedov I,Sofola-Adesakin O

doi

10.3389/fnmol.2018.00297

subject

Has Abstract

pub_date

2018-08-28 00:00:00

pages

297

issn

1662-5099

journal_volume

11

pub_type

杂志文章
  • The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.

    abstract::Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epilep...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00026

    authors: Boison D

    更新日期:2016-04-13 00:00:00

  • Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204.

    abstract::The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical foldi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00031

    authors: Venø MT,Venø ST,Rehberg K,van Asperen JV,Clausen BH,Holm IE,Pasterkamp RJ,Finsen B,Kjems J

    更新日期:2017-02-09 00:00:00

  • Cues to Opening Mechanisms From in Silico Electric Field Excitation of Cx26 Hemichannel and in Vitro Mutagenesis Studies in HeLa Transfectans.

    abstract::Connexin channels play numerous essential roles in virtually every organ by mediating solute exchange between adjacent cells, or between cytoplasm and extracellular milieu. Our understanding of the structure-function relationship of connexin channels relies on X-ray crystallographic data for human connexin 26 (hCx26) ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00170

    authors: Zonta F,Buratto D,Crispino G,Carrer A,Bruno F,Yang G,Mammano F,Pantano S

    更新日期:2018-05-31 00:00:00

  • Corrigendum: Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00099.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2019.00149

    authors: Yadav SC,Tetenborg S,Dedek K

    更新日期:2019-06-12 00:00:00

  • Short-Term Environmental Stimulation Spatiotemporally Modulates Specific Serotonin Receptor Gene Expression and Behavioral Pharmacology in a Sexually Dimorphic Manner in Huntington's Disease Transgenic Mice.

    abstract::Huntington's disease (HD) is a neurodegenerative disorder caused by a tandem repeat mutation encoding an expanded polyglutamine tract in the huntingtin protein, which leads to cognitive, psychiatric and motor dysfunction. Exposure to environmental enrichment (EE), which enhances levels of cognitive stimulation and phy...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00433

    authors: Zajac MS,Renoir T,Perreau VM,Li S,Adams W,van den Buuse M,Hannan AJ

    更新日期:2018-12-10 00:00:00

  • Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    abstract::Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00091

    authors: Haass-Koffler CL,Bartlett SE

    更新日期:2012-09-06 00:00:00

  • Re-innervation of the Denervated Dentate Gyrus by Sprouting Associational and Commissural Mossy Cell Axons in Organotypic Tissue Cultures of Entorhinal Cortex and Hippocampus.

    abstract::Collateral sprouting of surviving axons contributes to the synaptic reorganization after brain injury. To study this clinically relevant phenomenon, we used complex organotypic tissue cultures of mouse entorhinal cortex (EC) and hippocampus (H). Single EC-H cultures were generated to analyze associational sprouting, a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00270

    authors: Del Turco D,Paul MH,Beeg Moreno VJ,Hildebrandt-Einfeldt L,Deller T

    更新日期:2019-11-12 00:00:00

  • The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage.

    abstract::Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Dros...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00097

    authors: Liu Y,Luo J,Nässel DR

    更新日期:2016-10-13 00:00:00

  • Implications of DNA Methylation in Parkinson's Disease.

    abstract::It has been 200 years since Parkinson's disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00225

    authors: Miranda-Morales E,Meier K,Sandoval-Carrillo A,Salas-Pacheco J,Vázquez-Cárdenas P,Arias-Carrión O

    更新日期:2017-07-18 00:00:00

  • Altered Organization of GABA(A) Receptor mRNA Expression in the Depressed Suicide Brain.

    abstract::Inter-relationships ordinarily exist between mRNA expression of GABA(A) subunits in the frontopolar cortex (FPC) of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were e...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.02.003.2010

    authors: Poulter MO,Du L,Zhurov V,Palkovits M,Faludi G,Merali Z,Anisman H

    更新日期:2010-03-29 00:00:00

  • Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models.

    abstract::A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and ne...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.597391

    authors: Wang J,Fourriere L,Gleeson PA

    更新日期:2020-11-26 00:00:00

  • The Regulatory Role of Long Noncoding RNAs in Different Brain Cell Types Involved in Ischemic Stroke.

    abstract::Stroke results in high morbidity and high mortality worldwide, with ischemic stroke accounting for 80% to 85%. As effective treatments for ischemic stroke remain limited because of the narrow therapeutic time window, a better understanding of the pathologic mechanism and new therapeutic intervention targets are needed...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00061

    authors: Chen R,Xu X,Huang L,Zhong W,Cui L

    更新日期:2019-03-22 00:00:00

  • Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders.

    abstract::Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00387

    authors: Fisher NM,Seto M,Lindsley CW,Niswender CM

    更新日期:2018-10-23 00:00:00

  • CSF Cholinergic Index, a New Biomeasure of Treatment Effect in Patients With Alzheimer's Disease.

    abstract::Alzheimer's disease (AD) is a progressive disease with early degeneration of the central cholinergic neurons. Currently, three of four AD drugs act by inhibiting the acetylcholine (ACh) degrading enzyme, acetylcholinesterase (AChE). Efficacy of these drugs depends on available amount of ACh, which is biosynthesized by...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00239

    authors: Karami A,Eriksdotter M,Kadir A,Almkvist O,Nordberg A,Darreh-Shori T

    更新日期:2019-10-11 00:00:00

  • Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand.

    abstract::Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their intera...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00263

    authors: Ramesh N,Pandey UB

    更新日期:2017-08-22 00:00:00

  • Identification of lncRNAs Associated With Neuroblastoma in Cross-Sectional Databases: Potential Biomarkers.

    abstract::Long non-coding RNAs (lncRNAs) have emerged as an important regulatory control in biological systems. Though the field of lncRNA has been progressing rapidly, a complete understanding of the role of lncRNAs in neuroblastoma pathogenesis is still lacking. To identify the abrogated lncRNAs in primary neuroblastoma and i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00293

    authors: Prajapati B,Fatma M,Fatima M,Khan MT,Sinha S,Seth PK

    更新日期:2019-12-12 00:00:00

  • Tropomodulin's Actin-Binding Abilities Are Required to Modulate Dendrite Development.

    abstract::There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a min...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00357

    authors: Gray KT,Stefen H,Ly TNA,Keller CJ,Colpan M,Wayman GA,Pate E,Fath T,Kostyukova AS

    更新日期:2018-10-09 00:00:00

  • Long Non-coding RNA TUG1 Sponges Mir-145a-5p to Regulate Microglial Polarization After Oxygen-Glucose Deprivation.

    abstract::Microglia plays a critical role in neuroinflammation after ischemic stroke by releasing diverse inflammatory cytokines. Long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is widely expressed in adult brain and has been reported to participate in multiple biological processes associated with nervous system d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00215

    authors: Wang H,Liao S,Li H,Chen Y,Yu J

    更新日期:2019-09-10 00:00:00

  • Functions of GSK-3 Signaling in Development of the Nervous System.

    abstract::Glycogen synthase kinase-3 (GSK-3) is central to multiple intracellular pathways including those activated by Wnt/β-catenin, Sonic Hedgehog, Notch, growth factor/RTK, and G protein-coupled receptor signals. All of these signals importantly contribute to neural development. Early attention on GSK-3 signaling in neural ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00044

    authors: Kim WY,Snider WD

    更新日期:2011-11-17 00:00:00

  • The Enzymatic Core of the Parkinson's Disease-Associated Protein LRRK2 Impairs Mitochondrial Biogenesis in Aging Yeast.

    abstract::Mitochondrial dysfunction is a prominent trait of cellular decline during aging and intimately linked to neuronal degeneration during Parkinson's disease (PD). Various proteins associated with PD have been shown to differentially impact mitochondrial dynamics, quality control and function, including the leucine-rich r...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00205

    authors: Aufschnaiter A,Kohler V,Walter C,Tosal-Castano S,Habernig L,Wolinski H,Keller W,Vögtle FN,Büttner S

    更新日期:2018-06-21 00:00:00

  • Intermittent Fasting Protects against Alzheimer's Disease Possible through Restoring Aquaporin-4 Polarity.

    abstract::The impairment of amyloid-β (Aβ) clearance in the brain plays a causative role in Alzheimer's disease (AD). Polarity distribution of aquaporin-4 (AQP4) is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23), however, it is unknown whether the ra...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00395

    authors: Zhang J,Zhan Z,Li X,Xing A,Jiang C,Chen Y,Shi W,An L

    更新日期:2017-11-29 00:00:00

  • Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease.

    abstract::Parkinson's disease (PD) is a progressive CNS disorder that is primarily associated with impaired movement. PD develops over decades and is linked to the gradual loss of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). While the administration o...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00010

    authors: Lasbleiz C,Mestre-Francés N,Devau G,Luquin MR,Tenenbaum L,Kremer EJ,Verdier JM

    更新日期:2019-02-11 00:00:00

  • Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders.

    abstract::The phosphoinositide 3-kinase (PI3K) complex plays important roles in virtually all cells of the body. The enzymatic activity of PI3K to phosphorylate phosphoinositides in the membrane is mediated by a group of catalytic and regulatory subunits. Among those, the class I catalytic subunits, p110α, p110β, p110γ, and p11...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00012

    authors: Gross C,Bassell GJ

    更新日期:2014-02-13 00:00:00

  • The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency.

    abstract::Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00322

    authors: Janzen D,Schaefer N,Delto C,Schindelin H,Villmann C

    更新日期:2017-10-09 00:00:00

  • Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes.

    abstract::Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both mon...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00085

    authors: Poutiainen P,Jaronen M,Quintana FJ,Brownell AL

    更新日期:2016-09-15 00:00:00

  • Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed.

    abstract::Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the pept...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00260

    authors: Luo J,Liu Y,Nässel DR

    更新日期:2017-08-14 00:00:00

  • The Requirement of Sox2 for the Spinal Cord Motor Neuron Development of Zebrafish.

    abstract::Sex-determining region Y box 2 (Sox2), expressed in neural tissues, plays an important role as a transcription factor not only in the pluripotency and proliferation of neuronal cells but also in the opposite function of cell differentiation. Nevertheless, how Sox2 is linked to motor neuron development remains unknown....

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00034

    authors: Gong J,Hu S,Huang Z,Hu Y,Wang X,Zhao J,Qian P,Wang C,Sheng J,Lu X,Wei G,Liu D

    更新日期:2020-03-27 00:00:00

  • Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle.

    abstract::Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00137

    authors: You D,Guo L,Li W,Sun S,Chen Y,Chai R,Li H

    更新日期:2018-04-30 00:00:00

  • Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease.

    abstract::We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer's disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal fo...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00053

    authors: Cunnane SC,Courchesne-Loyer A,Vandenberghe C,St-Pierre V,Fortier M,Hennebelle M,Croteau E,Bocti C,Fulop T,Castellano CA

    更新日期:2016-07-08 00:00:00

  • Dysfunction of outer segment guanylate cyclase caused by retinal disease related mutations.

    abstract::Membrane bound guanylate cyclases are expressed in rod and cone cells of the vertebrate retina and mutations in several domains of rod outer segment guanylate cyclase 1 (ROS-GC1 encoded by the gene GUCY2D) correlate with different forms of retinal degenerations. In the present work we investigated the biochemical cons...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2014.00004

    authors: Zägel P,Koch KW

    更新日期:2014-02-26 00:00:00