Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down.

Abstract:

:Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hASH1 is involved in the specification of neuronal subtype identities. Misexpression of the transcription factor is correlated with a variety of tumors, including lung cancer and neuroendocrine tumors. To gain insights into the molecular mechanisms of hASH1 regulation, we screened for conditions causing changes in hASH1 gene expression rate. We found that treatment of human neuroblastoma-derived Kelly cells with phorbol 12-myristate 13-acetate (PMA) resulted in a fast, strong and long-lasting suppression of hASH1 synthesis. Reporter gene assays with constructs, in which the luciferase activity was controlled either by the ASCL1 promoter or by the hASH1 mRNA untranslated regions (UTRs), revealed a mainly UTR-dependent mechanism. The hASH1 promoter activity was decreased only after 48 h of PMA administration. Our data indicate that different mechanisms acting consecutively at the transcriptional and post-transcriptional level are responsible for hASH1 suppression after PMA treatment. We provide evidence that short term inhibition of hASH1 synthesis is attributed to hASH1 mRNA destabilization, which seems to depend mainly on protein kinase C activity. Under prolonged conditions (48 h), hASH1 suppression is mediated by decreased promoter activity and inhibition of mRNA translation.

journal_name

Front Mol Neurosci

authors

Benko E,Winkelmann A,Meier JC,Persson PB,Scholz H,Fähling M

doi

10.3389/fnmol.2011.00001

subject

Has Abstract

pub_date

2011-02-07 00:00:00

pages

1

issn

1662-5099

journal_volume

4

pub_type

杂志文章
  • Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models.

    abstract::Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium's effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions incl...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00297

    authors: Kerr F,Bjedov I,Sofola-Adesakin O

    更新日期:2018-08-28 00:00:00

  • N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors.

    abstract::N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00188

    authors: Skrenkova K,Lee S,Lichnerova K,Kaniakova M,Hansikova H,Zapotocky M,Suh YH,Horak M

    更新日期:2018-06-04 00:00:00

  • The Regulatory Role of Long Noncoding RNAs in Different Brain Cell Types Involved in Ischemic Stroke.

    abstract::Stroke results in high morbidity and high mortality worldwide, with ischemic stroke accounting for 80% to 85%. As effective treatments for ischemic stroke remain limited because of the narrow therapeutic time window, a better understanding of the pathologic mechanism and new therapeutic intervention targets are needed...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00061

    authors: Chen R,Xu X,Huang L,Zhong W,Cui L

    更新日期:2019-03-22 00:00:00

  • PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway.

    abstract::Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a mar...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00403

    authors: Yang Q,Zhou Y,Yin H,Li H,Zhou M,Sun G,Cao Z,Man R,Wang H,Li J

    更新日期:2018-11-12 00:00:00

  • The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.

    abstract::Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epilep...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00026

    authors: Boison D

    更新日期:2016-04-13 00:00:00

  • Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs.

    abstract::Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the unde...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00380

    authors: Comhair J,Devoght J,Morelli G,Harvey RJ,Briz V,Borrie SC,Bagni C,Rigo JM,Schiffmann SN,Gall D,Brône B,Molchanova SM

    更新日期:2018-10-15 00:00:00

  • GABA(A) Receptor Dynamics and Constructing GABAergic Synapses.

    abstract::GABA(A) receptors are located on the majority of neurons in the central and peripheral nervous system, where they mediate important actions of the neurotransmitter gamma-aminobutyric acid. Early in development the trophic properties of GABA allow a healthy development of the nervous system. Most neurons have a high in...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.02.007.2008

    authors: Tretter V,Moss SJ

    更新日期:2008-05-30 00:00:00

  • Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics.

    abstract::GABAergic interneuron diversity is a key feature in the brain that helps to create different brain activity patterns and behavioral states. Cell type classification schemes-based on anatomical, physiological and molecular features-have provided us with a detailed understanding of the distinct types that constitute thi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00115

    authors: Que L,Winterer J,Földy C

    更新日期:2019-05-07 00:00:00

  • Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults.

    abstract::Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable w...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00233

    authors: Pesce M,Tatangelo R,La Fratta I,Rizzuto A,Campagna G,Turli C,Ferrone A,Franceschelli S,Speranza L,Verrocchio MC,De Lutiis MA,Felaco M,Grilli A

    更新日期:2017-07-24 00:00:00

  • Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients.

    abstract::Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00106

    authors: Vrabec K,Boštjančič E,Koritnik B,Leonardis L,Dolenc Grošelj L,Zidar J,Rogelj B,Glavač D,Ravnik-Glavač M

    更新日期:2018-04-04 00:00:00

  • Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation.

    abstract::Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensiv...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00168

    authors: Yang Z,Gou L,Chen S,Li N,Zhang S,Zhang L

    更新日期:2017-06-07 00:00:00

  • Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences.

    abstract::Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer's disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00003

    authors: Copenhaver PF,Kögel D

    更新日期:2017-01-31 00:00:00

  • CNS-Derived Blood Exosomes as a Promising Source of Biomarkers: Opportunities and Challenges.

    abstract::Eukaryotic cells release different types of extracellular vesicles (EVs) including exosomes, ectosomes, and microvesicles. Exosomes are nanovesicles, 30-200 nm in diameter, that carry cell- and cell-state-specific cargo of proteins, lipids, and nucleic acids, including mRNA and miRNA. Recent studies have shown that ce...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00038

    authors: Hornung S,Dutta S,Bitan G

    更新日期:2020-03-19 00:00:00

  • Cellular Mechanisms Contributing to the Functional Heterogeneity of GABAergic Synapses.

    abstract::GABAergic inhibitory neurotransmission contributes to diverse aspects of brain development and adult plasticity, including the expression of complex cognitive processes. This is afforded for in part by the dynamic adaptations occurring at inhibitory synapses, which show great heterogeneity both in terms of upstream si...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00187

    authors: Campbell BFN,Tyagarajan SK

    更新日期:2019-08-13 00:00:00

  • Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis.

    abstract::Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00433

    authors: Henriques A,Croixmarie V,Bouscary A,Mosbach A,Keime C,Boursier-Neyret C,Walter B,Spedding M,Loeffler JP

    更新日期:2018-01-04 00:00:00

  • The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage.

    abstract::Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Dros...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00097

    authors: Liu Y,Luo J,Nässel DR

    更新日期:2016-10-13 00:00:00

  • Hypoxic Preconditioning Maintains GLT-1 Against Transient Global Cerebral Ischemia Through Upregulating Cx43 and Inhibiting c-Src.

    abstract::Transient global cerebral ischemia (tGCI) causes excessive release of glutamate from neurons. Astrocytic glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) together play a predominant role in maintaining glutamate at normal extracellular concentrations. Though our previous studies reported the alleviation o...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00344

    authors: Li K,Zhou H,Zhan L,Shi Z,Sun W,Liu D,Liu L,Liang D,Tan Y,Xu W,Xu E

    更新日期:2018-10-01 00:00:00

  • Microglial Lectins in Health and Neurological Diseases.

    abstract::Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00158

    authors: Siew JJ,Chern Y

    更新日期:2018-05-14 00:00:00

  • Cryptochrome Is a Regulator of Synaptic Plasticity in the Visual System of Drosophila melanogaster.

    abstract::Drosophila CRYPTOCHROME (CRY) is a blue light sensitive protein with a key role in circadian photoreception. A main feature of CRY is that light promotes an interaction with the circadian protein TIMELESS (TIM) resulting in their ubiquitination and degradation, a mechanism that contributes to the synchronization of th...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00165

    authors: Damulewicz M,Mazzotta GM,Sartori E,Rosato E,Costa R,Pyza EM

    更新日期:2017-05-30 00:00:00

  • Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane.

    abstract::Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2014.00093

    authors: Jinno Y,Shoda K,Rial-Verde E,Yuste R,Miyawaki A,Tsutsui H

    更新日期:2014-11-27 00:00:00

  • Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy.

    abstract::Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00106

    authors: Dadsetan S,Balzano T,Forteza J,Cabrera-Pastor A,Taoro-Gonzalez L,Hernandez-Rabaza V,Gil-Perotín S,Cubas-Núñez L,García-Verdugo JM,Agusti A,Llansola M,Felipo V

    更新日期:2016-11-02 00:00:00

  • Functions of GSK-3 Signaling in Development of the Nervous System.

    abstract::Glycogen synthase kinase-3 (GSK-3) is central to multiple intracellular pathways including those activated by Wnt/β-catenin, Sonic Hedgehog, Notch, growth factor/RTK, and G protein-coupled receptor signals. All of these signals importantly contribute to neural development. Early attention on GSK-3 signaling in neural ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00044

    authors: Kim WY,Snider WD

    更新日期:2011-11-17 00:00:00

  • Cdk7 Is Required for Activity-Dependent Neuronal Gene Expression, Long-Lasting Synaptic Plasticity and Long-Term Memory.

    abstract::In the brain, de novo gene expression driven by learning-associated neuronal activities is critical for the formation of long-term memories. However, the signaling machinery mediating neuronal activity-induced gene expression, especially the rapid transcription of immediate-early genes (IEGs) remains unclear. Cyclin-d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00365

    authors: He G,Yang X,Wang G,Qi J,Mao R,Wu Z,Zhou Z

    更新日期:2017-11-07 00:00:00

  • Schwann Cell Precursors; Multipotent Glial Cells in Embryonic Nerves.

    abstract::The cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precurso...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00069

    authors: Jessen KR,Mirsky R

    更新日期:2019-03-26 00:00:00

  • Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC).

    abstract::In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-lin...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00043

    authors: Pinto MJ,Pedro JR,Costa RO,Almeida RD

    更新日期:2016-06-10 00:00:00

  • Clustered Protocadherins Are Required for Building Functional Neural Circuits.

    abstract::Neuronal identity is generated by the cell-surface expression of clustered protocadherin (Pcdh) isoforms. In mice, 58 isoforms from three gene clusters, Pcdhα, Pcdhβ, and Pcdhγ, are differentially expressed in neurons. Since cis-heteromeric Pcdh oligomers on the cell surface interact homophilically with that in other ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00114

    authors: Hasegawa S,Kobayashi H,Kumagai M,Nishimaru H,Tarusawa E,Kanda H,Sanbo M,Yoshimura Y,Hirabayashi M,Hirabayashi T,Yagi T

    更新日期:2017-04-24 00:00:00

  • Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

    abstract::Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory pr...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00014

    authors: Utomo WK,de Vries M,Braat H,Bruno MJ,Parikh K,Comalada M,Peppelenbosch MP,van Goor H,Fuhler GM

    更新日期:2017-01-24 00:00:00

  • Elevated Serum SIRT 2 May Differentiate Parkinson's Disease From Atypical Parkinsonian Syndromes.

    abstract::Atypical Parkinson syndromes (APSs) often have symptoms that overlap with those of Parkinson's disease (PD), especially early in the disease, making these disorders difficult to diagnose. Previous studies have demonstrated an association of oligomeric α-synuclein (α-Syn), a key element in the pathogenesis of PD, with ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00129

    authors: Singh AP,Ramana G,Bajaj T,Singh V,Dwivedi S,Behari M,Dey AB,Dey S

    更新日期:2019-06-12 00:00:00

  • Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics.

    abstract::Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a devastating neuromuscular disease caused by mutations in the LAMA2 gene. These mutations result in the complete absence or truncated expression of the laminin-α2 chain. The α2-chain is a major component of the laminin-211 and laminin-221 isoforms, the p...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00001

    authors: Barraza-Flores P,Bates CR,Oliveira-Santos A,Burkin DJ

    更新日期:2020-02-11 00:00:00

  • Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models.

    abstract::A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and ne...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.597391

    authors: Wang J,Fourriere L,Gleeson PA

    更新日期:2020-11-26 00:00:00