Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs.

Abstract:

:Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases.

journal_name

Front Mol Neurosci

authors

Comhair J,Devoght J,Morelli G,Harvey RJ,Briz V,Borrie SC,Bagni C,Rigo JM,Schiffmann SN,Gall D,Brône B,Molchanova SM

doi

10.3389/fnmol.2018.00380

subject

Has Abstract

pub_date

2018-10-15 00:00:00

pages

380

issn

1662-5099

journal_volume

11

pub_type

杂志文章
  • Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy.

    abstract::Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00174

    authors: Starobova H,Vetter I

    更新日期:2017-05-31 00:00:00

  • Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes.

    abstract::MicroRNAs (miRNAs) are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA prof...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00010

    authors: Soreq L,Salomonis N,Bronstein M,Greenberg DS,Israel Z,Bergman H,Soreq H

    更新日期:2013-05-13 00:00:00

  • Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits.

    abstract::Rod and cone phosphodiesterase 6 (PDE6) are key effector enzymes of the vertebrate phototransduction pathway. Rod PDE6 consists of two catalytic subunits PDE6α and PDE6β and two identical inhibitory PDE6γ subunits, while cone PDE6 is composed of two identical PDE6α' catalytic subunits and two identical cone-specific P...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00233

    authors: Deng WT,Kolandaivelu S,Dinculescu A,Li J,Zhu P,Chiodo VA,Ramamurthy V,Hauswirth WW

    更新日期:2018-07-09 00:00:00

  • Interleukin 4 Affects Epilepsy by Regulating Glial Cells: Potential and Possible Mechanism.

    abstract::Epilepsy is a chronic brain dysfunction induced by an abnormal neuronal discharge that is caused by complicated psychopathologies. Recently, accumulating studies have revealed a close relationship between inflammation and epilepsy. Specifically, microglia and astrocytes are important inflammatory cells in the central ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.554547

    authors: Chen L,Zhu L,Lu D,Wu Z,Han Y,Xu P,Chang L,Wu Q

    更新日期:2020-09-04 00:00:00

  • RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis.

    abstract::Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2013.00040

    authors: Heman-Ackah SM,Hallegger M,Rao MS,Wood MJ

    更新日期:2013-11-20 00:00:00

  • Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    abstract::Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00091

    authors: Haass-Koffler CL,Bartlett SE

    更新日期:2012-09-06 00:00:00

  • Puzzling Out Synaptic Vesicle 2 Family Members Functions.

    abstract::Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00148

    authors: Bartholome O,Van den Ackerveken P,Sánchez Gil J,de la Brassinne Bonardeaux O,Leprince P,Franzen R,Rogister B

    更新日期:2017-05-22 00:00:00

  • Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice.

    abstract::Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/- ). We demonstrated for the first time, that Ptch1+...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00168

    authors: Antonelli F,Casciati A,Tanori M,Tanno B,Linares-Vidal MV,Serra N,Bellés M,Pannicelli A,Saran A,Pazzaglia S

    更新日期:2018-05-23 00:00:00

  • Elevated Serum SIRT 2 May Differentiate Parkinson's Disease From Atypical Parkinsonian Syndromes.

    abstract::Atypical Parkinson syndromes (APSs) often have symptoms that overlap with those of Parkinson's disease (PD), especially early in the disease, making these disorders difficult to diagnose. Previous studies have demonstrated an association of oligomeric α-synuclein (α-Syn), a key element in the pathogenesis of PD, with ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00129

    authors: Singh AP,Ramana G,Bajaj T,Singh V,Dwivedi S,Behari M,Dey AB,Dey S

    更新日期:2019-06-12 00:00:00

  • Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.

    abstract::Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium ch...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00188

    authors: Torres RF,Hidalgo C,Kerr B

    更新日期:2017-06-13 00:00:00

  • The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?

    abstract::The neuromuscular junction (NMJ) is the chemical synapse connecting motor neurons and skeletal muscle fibers. NMJs allow all voluntary movements, and ensure vital functions like breathing. Changes in the structure and function of NMJs are hallmarks of numerous pathological conditions that affect muscle function includ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00162

    authors: Castets P,Ham DJ,Rüegg MA

    更新日期:2020-08-28 00:00:00

  • Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down.

    abstract::Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hA...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00001

    authors: Benko E,Winkelmann A,Meier JC,Persson PB,Scholz H,Fähling M

    更新日期:2011-02-07 00:00:00

  • Bcl11 Transcription Factors Regulate Cortical Development and Function.

    abstract::Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor fami...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00051

    authors: Simon R,Wiegreffe C,Britsch S

    更新日期:2020-04-08 00:00:00

  • Molecular Mechanisms of Lithium Action: Switching the Light on Multiple Targets for Dementia Using Animal Models.

    abstract::Lithium has long been used for the treatment of psychiatric disorders, due to its robust beneficial effect as a mood stabilizing drug. Lithium's effectiveness for improving neurological function is therefore well-described, stimulating the investigation of its potential use in several neurodegenerative conditions incl...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00297

    authors: Kerr F,Bjedov I,Sofola-Adesakin O

    更新日期:2018-08-28 00:00:00

  • The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.

    abstract::Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epilep...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00026

    authors: Boison D

    更新日期:2016-04-13 00:00:00

  • Corrigendum: β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia.

    abstract::[This corrects the article on p. 257 in vol. 10, PMID: 28855859.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2017.00392

    authors: Sun Y,Chen X,Zhang X,Shen X,Wang M,Wang X,Liu WC,Liu CF,Liu J,Liu W,Jin X

    更新日期:2017-11-20 00:00:00

  • Molecular codes for neuronal individuality and cell assembly in the brain.

    abstract::The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporatio...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00045

    authors: Yagi T

    更新日期:2012-04-12 00:00:00

  • Brain patterning perturbations following PTEN loss.

    abstract::This review will consider the impact of compromised PTEN signaling in brain patterning. We approach understanding the contribution of PTEN to nervous system development by surveying the findings from the numerous genetic loss-of-function models that have been generated as well as other forms of PTEN inactivation. By e...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00035

    authors: Veleva-Rotse BO,Barnes AP

    更新日期:2014-05-14 00:00:00

  • Dietary-Induced Signals That Activate the Gonadal Longevity Pathway during Development Regulate a Proteostasis Switch in Caenorhabditis elegans Adulthood.

    abstract::Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis). One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00254

    authors: Shemesh N,Meshnik L,Shpigel N,Ben-Zvi A

    更新日期:2017-08-09 00:00:00

  • M-Calpain Activation Facilitates Seizure Induced KCC2 Down Regulation.

    abstract::Potassium chloride co-transporter 2 (KCC2), a major chloride transporter that maintains GABAA receptor inhibition in mature mammalian neurons, is down-regulated in the hippocampus during epileptogenesis. Impaired KCC2 function accelerates or facilitates seizure onset. Calpain, with two main subtypes of m- and μ-calpai...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00287

    authors: Wan L,Ren L,Chen L,Wang G,Liu X,Wang BH,Wang Y

    更新日期:2018-08-21 00:00:00

  • PKC, AKT and ERK1/2-Mediated Modulations of PARP1, NF-κB and PEA15 Activities Distinctly Regulate Regional Specific Astroglial Responses Following Status Epilepticus.

    abstract::Status epilepticus (SE, a prolonged seizure activity) leads to reactive astrogliosis and astroglial apoptosis in the regional specific manners, independent of hemodynamics. Poly(ADP-ribose) polymerase-1 (PARP1) activity is relevant to these distinct astroglial responses. Since various regulatory signaling molecules be...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00180

    authors: Kim JE,Kang TC

    更新日期:2019-07-24 00:00:00

  • Roles of eIF2α kinases in the pathogenesis of Alzheimer's disease.

    abstract::Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of eukaryotic initiation factor-2α (eIF2α). Evidence is accumulating that persistent eIF2α phosphorylation at Ser51 through prolonged overactivation of regulatory kinases occurs in neurodegenerative diseases such as Alzhe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00022

    authors: Ohno M

    更新日期:2014-04-16 00:00:00

  • Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy.

    abstract::The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain p...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00120

    authors: Huyghe D,Denninger AR,Voss CM,Frank P,Gao N,Brandon N,Waagepetersen HS,Ferguson AD,Pangalos M,Doig P,Moss SJ

    更新日期:2019-05-21 00:00:00

  • Transcription Factor NFAT5 Promotes Glioblastoma Cell-driven Angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 Expression Change.

    abstract::Glioblastoma (GBM) is the most aggressive primary intracranial tumor of adults and confers a poor prognosis due to high vascularization. Hence anti-angiogenic therapy has become a promising strategy for GBM treatment. In this study, the transcription factor nuclear factor of activated T-cells 5 (NFAT5) was significant...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00301

    authors: Yu H,Zheng J,Liu X,Xue Y,Shen S,Zhao L,Li Z,Liu Y

    更新日期:2017-09-21 00:00:00

  • Immune Checkpoint Blockade - How Does It Work in Brain Metastases?

    abstract::Immune checkpoints restrain the immune system following its activation and their inhibition unleashes anti-tumor immune responses. Immune checkpoint inhibitors revolutionized the treatment of several cancer types, including melanoma, and immune checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies is becoming ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00282

    authors: Lorger M,Andreou T,Fife C,James F

    更新日期:2019-11-21 00:00:00

  • Different Amyloid-β Self-Assemblies Have Distinct Effects on Intracellular Tau Aggregation.

    abstract::Alzheimer's disease (AD) pathology is characterized by the aggregation of beta-amyloid (Aβ) and tau in the form of amyloid plaques and neurofibrillary tangles in the brain. It has been found that a synergistic relationship between these two proteins may contribute to their roles in disease progression. However, how Aβ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00268

    authors: Shin WS,Di J,Murray KA,Sun C,Li B,Bitan G,Jiang L

    更新日期:2019-11-08 00:00:00

  • Pharmacological c-Jun NH2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice.

    abstract::Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00308

    authors: Schellino R,Boido M,Borsello T,Vercelli A

    更新日期:2018-09-04 00:00:00

  • The Prohormone Proinsulin as a Neuroprotective Factor: Past History and Future Prospects.

    abstract::Proinsulin was first identified as the primary translation product of the insulin gene in Donald Steiner's laboratory in 1967, and was the first prohormone to be isolated and sequenced. While its role as an insulin precursor has been extensively studied in the field of endocrinology, the bioactivity of the proinsulin ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00426

    authors: de Pablo F,Hernández-Sánchez C,de la Rosa EJ

    更新日期:2018-11-26 00:00:00

  • Ion Channel Contributions to Morphological Development: Insights From the Role of Kir2.1 in Bone Development.

    abstract::The role of ion channels in neurons and muscles has been well characterized. However, recent work has demonstrated both the presence and necessity of ion channels in diverse cell types for morphological development. For example, mutations that disrupt ion channels give rise to abnormal structural development in specie...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00099

    authors: Ozekin YH,Isner T,Bates EA

    更新日期:2020-06-09 00:00:00

  • Corrigendum: Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00099.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2019.00149

    authors: Yadav SC,Tetenborg S,Dedek K

    更新日期:2019-06-12 00:00:00