N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors.

Abstract:

:N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors are regulated by N-glycosylation; however, limited information is available regarding the role of N-glycosylation in GluN3A-containing NMDARs. Using a combination of microscopy, biochemistry, and electrophysiology in mammalian cell lines and rat hippocampal neurons, we found that two asparagine residues (N203 and N368) in the GluN1 subunit and three asparagine residues (N145, N264 and N275) in the GluN3A subunit are required for surface delivery of GluN3A-containing NMDARs. Furthermore, deglycosylation and lectin-based analysis revealed that GluN3A subunits contain extensively modified N-glycan structures, including hybrid/complex forms of N-glycans. We also found (either using a panel of inhibitors or by studying human fibroblasts derived from patients with a congenital disorder of glycosylation) that N-glycan remodeling is not required for the surface delivery of GluN3A-containing NMDARs. Finally, we found that the surface mobility of GluN3A-containing NMDARs in hippocampal neurons is increased following incubation with 1-deoxymannojirimycin (DMM, an inhibitor of the formation of the hybrid/complex forms of N-glycans) and decreased in the presence of specific lectins. These findings provide new insight regarding the mechanisms by which neurons can regulate NMDAR trafficking and function.

journal_name

Front Mol Neurosci

authors

Skrenkova K,Lee S,Lichnerova K,Kaniakova M,Hansikova H,Zapotocky M,Suh YH,Horak M

doi

10.3389/fnmol.2018.00188

subject

Has Abstract

pub_date

2018-06-04 00:00:00

pages

188

issn

1662-5099

journal_volume

11

pub_type

杂志文章
  • Corrigendum: YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2019.00177.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2019.00256

    authors: Belin S,Herron J,VerPlank JJS,Park Y,Feltri LM,Poitelon Y

    更新日期:2019-10-18 00:00:00

  • Tcf12 Is Involved in Early Cell-Fate Determination and Subset Specification of Midbrain Dopamine Neurons.

    abstract::The basic helix-loop-helix (bHLH) protein family has previously been shown to be involved in the development of mesodiencephalic dopaminergic (mdDA) neurons in the murine midbrain. Specifically, Ngn2 and Mash1 are known to have a role in the specification of neural progenitors in the ventricular zone (VZ) of the midbr...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00353

    authors: Mesman S,Smidt MP

    更新日期:2017-11-01 00:00:00

  • An Insight into the Increasing Role of LncRNAs in the Pathogenesis of Gliomas.

    abstract::Long non-coding RNAs (LncRNAs) are essential epigenetic regulators with critical roles in tumor initiation and malignant progression. However, the roles and mechanisms of aberrantly expressed lncRNAs in the pathogenesis of gliomas are not fully understood. With the development of deep sequencing analyses, an extensive...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00053

    authors: Yan Y,Xu Z,Li Z,Sun L,Gong Z

    更新日期:2017-02-28 00:00:00

  • Maternal L-Carnitine Supplementation Improves Brain Health in Offspring from Cigarette Smoke Exposed Mothers.

    abstract::Maternal cigarette smoke exposure (SE) causes detrimental changes associated with the development of chronic neurological diseases in the offspring as a result of oxidative mitochondrial damage. Maternal L-Carnitine administration has been shown to reduce renal oxidative stress in SE offspring, but its effect in the b...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00033

    authors: Chan YL,Saad S,Al-Odat I,Oliver BG,Pollock C,Jones NM,Chen H

    更新日期:2017-02-13 00:00:00

  • The Requirement of Sox2 for the Spinal Cord Motor Neuron Development of Zebrafish.

    abstract::Sex-determining region Y box 2 (Sox2), expressed in neural tissues, plays an important role as a transcription factor not only in the pluripotency and proliferation of neuronal cells but also in the opposite function of cell differentiation. Nevertheless, how Sox2 is linked to motor neuron development remains unknown....

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00034

    authors: Gong J,Hu S,Huang Z,Hu Y,Wang X,Zhao J,Qian P,Wang C,Sheng J,Lu X,Wei G,Liu D

    更新日期:2020-03-27 00:00:00

  • Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells.

    abstract::Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by the overexpansion of cytosine-guanine-guanine (CGG) trinucleotide in Fmr1 gene, resulting in complete loss of the fragile X mental retardation protein (FMRP). Previous studies using Fmr1 knockout (Fmr1 KO) mice have ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00495

    authors: Yau SY,Bettio L,Chiu J,Chiu C,Christie BR

    更新日期:2019-01-17 00:00:00

  • On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases.

    abstract::In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interac...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00087

    authors: Secondo A,Bagetta G,Amantea D

    更新日期:2018-03-22 00:00:00

  • Regulation of intraocular pressure by soluble and membrane guanylate cyclases and their role in glaucoma.

    abstract::Glaucoma is a progressive optic neuropathy characterized by visual field defects that ultimately lead to irreversible blindness (Alward, 2000; Anderson et al., 2006). By the year 2020, an estimated 80 million people will have glaucoma, 11 million of which will be bilaterally blind. Primary open-angle glaucoma (POAG) i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00038

    authors: Buys ES,Potter LR,Pasquale LR,Ksander BR

    更新日期:2014-05-19 00:00:00

  • Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.

    abstract::Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium ch...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00188

    authors: Torres RF,Hidalgo C,Kerr B

    更新日期:2017-06-13 00:00:00

  • Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models.

    abstract::A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and ne...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.597391

    authors: Wang J,Fourriere L,Gleeson PA

    更新日期:2020-11-26 00:00:00

  • Emerging roles of glycogen synthase kinase 3 in the treatment of brain tumors.

    abstract::The constitutively active protein glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, acts paradoxically as a tumor suppressor in some cancers while potentiates growth in others. Deciphering what governs its actions is vital for understanding many pathological conditions, including brain cancer. What are see...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2011.00047

    authors: Mills CN,Nowsheen S,Bonner JA,Yang ES

    更新日期:2011-11-25 00:00:00

  • Role of transcription factors in peripheral nerve regeneration.

    abstract::Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways,...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00008

    authors: Patodia S,Raivich G

    更新日期:2012-02-10 00:00:00

  • Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation.

    abstract::Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neu...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00050

    authors: Müller-Dahlhaus F,Vlachos A

    更新日期:2013-12-17 00:00:00

  • Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease.

    abstract::Parkinson's disease (PD) is a progressive CNS disorder that is primarily associated with impaired movement. PD develops over decades and is linked to the gradual loss of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). While the administration o...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00010

    authors: Lasbleiz C,Mestre-Francés N,Devau G,Luquin MR,Tenenbaum L,Kremer EJ,Verdier JM

    更新日期:2019-02-11 00:00:00

  • Elevated Serum SIRT 2 May Differentiate Parkinson's Disease From Atypical Parkinsonian Syndromes.

    abstract::Atypical Parkinson syndromes (APSs) often have symptoms that overlap with those of Parkinson's disease (PD), especially early in the disease, making these disorders difficult to diagnose. Previous studies have demonstrated an association of oligomeric α-synuclein (α-Syn), a key element in the pathogenesis of PD, with ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00129

    authors: Singh AP,Ramana G,Bajaj T,Singh V,Dwivedi S,Behari M,Dey AB,Dey S

    更新日期:2019-06-12 00:00:00

  • Corrigendum: Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    abstract::[This corrects the article on p. 116 in vol. 9, PMID: 27867348.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2016.00154

    authors: Jackson KL,Dayton RD,Deverman BE,Klein RL

    更新日期:2016-12-22 00:00:00

  • Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes.

    abstract::An abnormally expanded GGGGCC repeat in C9ORF72 is the most frequent causal mutation associated with amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration (FTLD). Both gain-of-function (gf) and loss-of-function (lf) mechanisms have been involved in C9ORF72 related ALS/FTLD. The gf mechanism of C9ORF72 ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00113

    authors: Wang X,Hao L,Saur T,Joyal K,Zhao Y,Zhai D,Li J,Pribadi M,Coppola G,Cohen BM,Buttner EA

    更新日期:2016-11-08 00:00:00

  • LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State.

    abstract::The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER l...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00118

    authors: Herr UM,Strecker P,Storck SE,Thomas C,Rabiej V,Junker A,Schilling S,Schmidt N,Dowds CM,Eggert S,Pietrzik CU,Kins S

    更新日期:2017-04-27 00:00:00

  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases.

    abstract::Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific path...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00141

    authors: Chang X,Wang J,Jiang H,Shi L,Xie J

    更新日期:2019-06-05 00:00:00

  • Dysfunction of outer segment guanylate cyclase caused by retinal disease related mutations.

    abstract::Membrane bound guanylate cyclases are expressed in rod and cone cells of the vertebrate retina and mutations in several domains of rod outer segment guanylate cyclase 1 (ROS-GC1 encoded by the gene GUCY2D) correlate with different forms of retinal degenerations. In the present work we investigated the biochemical cons...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2014.00004

    authors: Zägel P,Koch KW

    更新日期:2014-02-26 00:00:00

  • The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice.

    abstract::Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. B...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00021

    authors: He Z,Han S,Zhu H,Hu X,Li X,Hou C,Wu C,Xie Q,Li N,Du X,Ni J,Liu Q

    更新日期:2020-03-10 00:00:00

  • Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration.

    abstract::Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both en...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00236

    authors: Mittal R,Nguyen D,Patel AP,Debs LH,Mittal J,Yan D,Eshraghi AA,Van De Water TR,Liu XZ

    更新日期:2017-07-31 00:00:00

  • Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury.

    abstract::Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the inj...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00101

    authors: Sobrido-Cameán D,Barreiro-Iglesias A

    更新日期:2018-04-03 00:00:00

  • Spatiotemporal and Long Lasting Modulation of 11 Key Nogo Signaling Genes in Response to Strong Neuroexcitation.

    abstract::Inhibition of nerve growth and plasticity in the CNS is to a large part mediated by Nogo-like signaling, now encompassing a plethora of ligands, receptors, co-receptors and modulators. Here we describe the distribution and levels of mRNA encoding 11 key genes involved in Nogo-like signaling (Nogo-A, Oligodendrocyte-My...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00094

    authors: Karlsson TE,Wellfelt K,Olson L

    更新日期:2017-04-11 00:00:00

  • Interleukin 4 Affects Epilepsy by Regulating Glial Cells: Potential and Possible Mechanism.

    abstract::Epilepsy is a chronic brain dysfunction induced by an abnormal neuronal discharge that is caused by complicated psychopathologies. Recently, accumulating studies have revealed a close relationship between inflammation and epilepsy. Specifically, microglia and astrocytes are important inflammatory cells in the central ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.554547

    authors: Chen L,Zhu L,Lu D,Wu Z,Han Y,Xu P,Chang L,Wu Q

    更新日期:2020-09-04 00:00:00

  • Short-Term Environmental Stimulation Spatiotemporally Modulates Specific Serotonin Receptor Gene Expression and Behavioral Pharmacology in a Sexually Dimorphic Manner in Huntington's Disease Transgenic Mice.

    abstract::Huntington's disease (HD) is a neurodegenerative disorder caused by a tandem repeat mutation encoding an expanded polyglutamine tract in the huntingtin protein, which leads to cognitive, psychiatric and motor dysfunction. Exposure to environmental enrichment (EE), which enhances levels of cognitive stimulation and phy...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00433

    authors: Zajac MS,Renoir T,Perreau VM,Li S,Adams W,van den Buuse M,Hannan AJ

    更新日期:2018-12-10 00:00:00

  • Early history of glycine receptor biology in Mammalian spinal cord circuits.

    abstract::In this review we provide an overview of key in vivo experiments undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR) function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agon...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2010.00013

    authors: Callister RJ,Graham BA

    更新日期:2010-05-21 00:00:00

  • Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding.

    abstract::Neuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca2+ signals to a wide range of protein targets, including G...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00459

    authors: Tsvetkov PO,Roman AY,Baksheeva VE,Nazipova AA,Shevelyova MP,Vladimirov VI,Buyanova MF,Zinchenko DV,Zamyatnin AA Jr,Devred F,Golovin AV,Permyakov SE,Zernii EY

    更新日期:2018-12-14 00:00:00

  • Novel Strategies for the Generation of Neuronal Diversity: Lessons From the Fly Visual System.

    abstract::Among all organs of an adult animal, the central nervous system stands out because of its vast complexity and morphological diversity. During early development, the entire central nervous system develops from an apparently homogenous group of progenitors that differentiate into all neural cell types. Therefore, unders...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00140

    authors: Contreras EG,Sierralta J,Oliva C

    更新日期:2019-05-31 00:00:00

  • Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice.

    abstract::Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. How...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.570640

    authors: Gorski K,Spoljaric A,Nyman TA,Kaila K,Battersby BJ,Lehesjoki AE

    更新日期:2020-11-13 00:00:00