Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses.

Abstract:

:The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl cis-trans isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95. This reduction in PSD-95 palmitoylation accounts for the observed loss in the number of dendritic PSD-95 clusters, the increased AMPAR mobility, and the decreased number of functional excitatory synapses. We find the effects of Pin1 overexpression were all rescued by manipulations aimed at increasing the levels of PSD-95 palmitoylation. Therefore, Pin1 is a key signaling molecule that regulates the stability of excitatory synapses and may participate in the destabilization of PSD-95 following the induction of synaptic plasticity.

journal_name

Front Mol Neurosci

authors

Delgado JY,Nall D,Selvin PR

doi

10.3389/fnmol.2020.00010

subject

Has Abstract

pub_date

2020-03-13 00:00:00

pages

10

issn

1662-5099

journal_volume

13

pub_type

杂志文章
  • Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes.

    abstract::Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both mon...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00085

    authors: Poutiainen P,Jaronen M,Quintana FJ,Brownell AL

    更新日期:2016-09-15 00:00:00

  • Two Vanilloid Ligand Bindings Per Channel Are Required to Transduce Capsaicin-Activating Stimuli.

    abstract::The tetrameric capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) in mammals has evolved the capability to integrate pain signal arising from harmful temperature and chemical irritants. The four repetitions of TRPV1 subunits result in an ion channel with excellent pain sensitivity, allowing this ionot...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00302

    authors: Liu TY,Chu Y,Mei HR,Chang D,Chuang HH

    更新日期:2020-01-09 00:00:00

  • Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations.

    abstract::Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Her...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00205

    authors: Huang C,Lu F,Li P,Cao C,Liu Z

    更新日期:2017-06-28 00:00:00

  • Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding.

    abstract::Neuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca2+ signals to a wide range of protein targets, including G...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00459

    authors: Tsvetkov PO,Roman AY,Baksheeva VE,Nazipova AA,Shevelyova MP,Vladimirov VI,Buyanova MF,Zinchenko DV,Zamyatnin AA Jr,Devred F,Golovin AV,Permyakov SE,Zernii EY

    更新日期:2018-12-14 00:00:00

  • mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain.

    abstract::Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however, no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00139

    authors: John S,Mishra R

    更新日期:2016-12-16 00:00:00

  • Interleukin 4 Affects Epilepsy by Regulating Glial Cells: Potential and Possible Mechanism.

    abstract::Epilepsy is a chronic brain dysfunction induced by an abnormal neuronal discharge that is caused by complicated psychopathologies. Recently, accumulating studies have revealed a close relationship between inflammation and epilepsy. Specifically, microglia and astrocytes are important inflammatory cells in the central ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.554547

    authors: Chen L,Zhu L,Lu D,Wu Z,Han Y,Xu P,Chang L,Wu Q

    更新日期:2020-09-04 00:00:00

  • Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits.

    abstract::Rod and cone phosphodiesterase 6 (PDE6) are key effector enzymes of the vertebrate phototransduction pathway. Rod PDE6 consists of two catalytic subunits PDE6α and PDE6β and two identical inhibitory PDE6γ subunits, while cone PDE6 is composed of two identical PDE6α' catalytic subunits and two identical cone-specific P...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00233

    authors: Deng WT,Kolandaivelu S,Dinculescu A,Li J,Zhu P,Chiodo VA,Ramamurthy V,Hauswirth WW

    更新日期:2018-07-09 00:00:00

  • The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine.

    abstract::Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epilep...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2016.00026

    authors: Boison D

    更新日期:2016-04-13 00:00:00

  • Differential Regulation of Syngap1 Translation by FMRP Modulates eEF2 Mediated Response on NMDAR Activity.

    abstract::SYNGAP1, a Synaptic Ras-GTPase activating protein, regulates synapse maturation during a critical developmental window. Heterozygous mutation in SYNGAP1 (SYNGAP1-/+) has been shown to cause Intellectual Disability (ID) in children. Recent studies have provided evidence for altered neuronal protein synthesis in a mouse...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00097

    authors: Paul A,Nawalpuri B,Shah D,Sateesh S,Muddashetty RS,Clement JP

    更新日期:2019-05-09 00:00:00

  • Schwann Cell Precursors; Multipotent Glial Cells in Embryonic Nerves.

    abstract::The cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precurso...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00069

    authors: Jessen KR,Mirsky R

    更新日期:2019-03-26 00:00:00

  • Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.

    abstract::Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium ch...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00188

    authors: Torres RF,Hidalgo C,Kerr B

    更新日期:2017-06-13 00:00:00

  • The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency.

    abstract::Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00322

    authors: Janzen D,Schaefer N,Delto C,Schindelin H,Villmann C

    更新日期:2017-10-09 00:00:00

  • Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions.

    abstract::Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00333

    authors: Ariazi J,Benowitz A,De Biasi V,Den Boer ML,Cherqui S,Cui H,Douillet N,Eugenin EA,Favre D,Goodman S,Gousset K,Hanein D,Israel DI,Kimura S,Kirkpatrick RB,Kuhn N,Jeong C,Lou E,Mailliard R,Maio S,Okafo G,Osswald M,

    更新日期:2017-10-17 00:00:00

  • Reduction of Silent Information Regulator 1 Activates Interleukin-33/ST2 Signaling and Contributes to Neuropathic Pain Induced by Spared Nerve Injury in Rats.

    abstract::Emerging studies have demonstrated that interleukin (IL)-33 and its receptor ST2 act as key factors in inflammatory diseases. Moreover, accumulating evidence has suggested that cytokines, including tumor necrosis factor (TNF)-α and IL-1β, trigger an inflammatory cascade. SIRT1 has been shown to suppress the expression...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00017

    authors: Zeng Y,Shi Y,Zhan H,Liu W,Cai G,Zhong H,Wang Y,Chen S,Huang S,Wu W

    更新日期:2020-02-12 00:00:00

  • Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

    abstract::Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory pr...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00014

    authors: Utomo WK,de Vries M,Braat H,Bruno MJ,Parikh K,Comalada M,Peppelenbosch MP,van Goor H,Fuhler GM

    更新日期:2017-01-24 00:00:00

  • Puzzling Out Synaptic Vesicle 2 Family Members Functions.

    abstract::Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00148

    authors: Bartholome O,Van den Ackerveken P,Sánchez Gil J,de la Brassinne Bonardeaux O,Leprince P,Franzen R,Rogister B

    更新日期:2017-05-22 00:00:00

  • Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis.

    abstract::Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00433

    authors: Henriques A,Croixmarie V,Bouscary A,Mosbach A,Keime C,Boursier-Neyret C,Walter B,Spedding M,Loeffler JP

    更新日期:2018-01-04 00:00:00

  • Mouse Panx1 Is Dispensable for Hearing Acquisition and Auditory Function.

    abstract::Panx1 forms plasma membrane channels in brain and several other organs, including the inner ear. Biophysical properties, activation mechanisms and modulators of Panx1 channels have been characterized in detail, however the impact of Panx1 on auditory function is unclear due to conflicts in published results. To addres...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00379

    authors: Zorzi V,Paciello F,Ziraldo G,Peres C,Mazzarda F,Nardin C,Pasquini M,Chiani F,Raspa M,Scavizzi F,Carrer A,Crispino G,Ciubotaru CD,Monyer H,Fetoni AR,M Salvatore A,Mammano F

    更新日期:2017-11-28 00:00:00

  • Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells.

    abstract::Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of ca...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00107

    authors: Angeletti F,Fossati G,Pattarozzi A,Würth R,Solari A,Daga A,Masiello I,Barbieri F,Florio T,Comincini S

    更新日期:2016-10-27 00:00:00

  • Alpha2-Containing Glycine Receptors Promote Neonatal Spontaneous Activity of Striatal Medium Spiny Neurons and Support Maturation of Glutamatergic Inputs.

    abstract::Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the unde...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00380

    authors: Comhair J,Devoght J,Morelli G,Harvey RJ,Briz V,Borrie SC,Bagni C,Rigo JM,Schiffmann SN,Gall D,Brône B,Molchanova SM

    更新日期:2018-10-15 00:00:00

  • Cdk7 Is Required for Activity-Dependent Neuronal Gene Expression, Long-Lasting Synaptic Plasticity and Long-Term Memory.

    abstract::In the brain, de novo gene expression driven by learning-associated neuronal activities is critical for the formation of long-term memories. However, the signaling machinery mediating neuronal activity-induced gene expression, especially the rapid transcription of immediate-early genes (IEGs) remains unclear. Cyclin-d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00365

    authors: He G,Yang X,Wang G,Qi J,Mao R,Wu Z,Zhou Z

    更新日期:2017-11-07 00:00:00

  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases.

    abstract::Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific path...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00141

    authors: Chang X,Wang J,Jiang H,Shi L,Xie J

    更新日期:2019-06-05 00:00:00

  • The ubiquitin proteasome system in glia and its role in neurodegenerative diseases.

    abstract::The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's d...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00073

    authors: Jansen AH,Reits EA,Hol EM

    更新日期:2014-08-08 00:00:00

  • Screening the Molecular Framework Underlying Local Dendritic mRNA Translation.

    abstract::In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory s...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00045

    authors: Namjoshi SV,Raab-Graham KF

    更新日期:2017-02-24 00:00:00

  • Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles.

    abstract::N-methyl-d-aspartate receptors (NMDARs) play an important role in many aspects of nervous system function such as synaptic plasticity and neuronal development. NMDARs are heteromers consisting of an obligate NR1 and most commonly one or two kinds of NR2 subunits. While the receptors have been well characterized in som...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.02.004.2009

    authors: Ewald RC,Cline HT

    更新日期:2009-09-11 00:00:00

  • ALS Yeast Models-Past Success Stories and New Opportunities.

    abstract::In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-4...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00394

    authors: Di Gregorio SE,Duennwald ML

    更新日期:2018-10-30 00:00:00

  • CB1 and LPA1 Receptors Relationship in the Mouse Central Nervous System.

    abstract::Neurolipids are a class of bioactive lipids that are produced locally through specific biosynthetic pathways in response to extracellular stimuli. Neurolipids are important endogenous regulators of neural cell proliferation, differentiation, oxidative stress, inflammation and apoptosis. Endocannabinoids (eCBs) and lys...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00223

    authors: González de San Román E,Manuel I,Ledent C,Chun J,Rodríguez de Fonseca F,Estivill-Torrús G,Santín LJ,Rodríguez Puertas R

    更新日期:2019-09-19 00:00:00

  • Corrigendum: A Single Dose of 5-MeO-DMT Stimulates Cell Proliferation, Neuronal Survivability, Morphological and Functional Changes in Adult Mice Ventral Dentate Gyrus.

    abstract::[This corrects the article DOI: 10.3389/fnmol.2018.00312.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,已发布勘误

    doi:10.3389/fnmol.2019.00079

    authors: Lima da Cruz RV,Moulin TC,Petiz LL,Leão RN

    更新日期:2019-04-04 00:00:00

  • MotomiRs: miRNAs in Motor Neuron Function and Disease.

    abstract::MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons,...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00127

    authors: Hawley ZCE,Campos-Melo D,Droppelmann CA,Strong MJ

    更新日期:2017-05-04 00:00:00

  • Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice.

    abstract::Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. How...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.570640

    authors: Gorski K,Spoljaric A,Nyman TA,Kaila K,Battersby BJ,Lehesjoki AE

    更新日期:2020-11-13 00:00:00