Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation.

Abstract:

:Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p < 0.05). This is indicative of the onset of memory impairment. Western blot analysis showed glial fibrillary acidic protein (GFAP), a known marker of activated astrocytes, was elevated in the prefrontal cortex (PFC) following blast exposure for both injury groups. Analysis of histone protein extract showed no changes in the level of any total histone proteins within the PFC. However, acetylation levels of histone H2b, H3, and H4 were decreased in both groups (p < 0.05). Co-localization immunofluorescence was used to further investigate any potential correlation between decreased histone acetylation and astrocyte activation. These experiments showed a similar decrease in H3 acetylation in astrocytes exposed to a 17 psi blast but not a 10 psi blast. Further investigation of gene expression by polymerase chain reaction (PCR) array, showed dysregulation of several cytokine and cytokine receptors that are involved in neuroinflammatory processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets.

journal_name

Front Mol Neurosci

authors

Bailey ZS,Grinter MB,VandeVord PJ

doi

10.3389/fnmol.2016.00064

subject

Has Abstract

pub_date

2016-08-08 00:00:00

pages

64

issn

1662-5099

journal_volume

9

pub_type

杂志文章
  • The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice.

    abstract::Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. B...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00021

    authors: He Z,Han S,Zhu H,Hu X,Li X,Hou C,Wu C,Xie Q,Li N,Du X,Ni J,Liu Q

    更新日期:2020-03-10 00:00:00

  • Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome.

    abstract::Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS)-a relapsing functional bowel disorder-presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resti...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00141

    authors: Qi R,Liu C,Weng Y,Xu Q,Chen L,Wang F,Zhang LJ,Lu GM

    更新日期:2016-12-06 00:00:00

  • From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development.

    abstract::Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural c...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00062

    authors: Goyal R,Spencer KA,Borodinsky LN

    更新日期:2020-04-24 00:00:00

  • Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204.

    abstract::The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical foldi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00031

    authors: Venø MT,Venø ST,Rehberg K,van Asperen JV,Clausen BH,Holm IE,Pasterkamp RJ,Finsen B,Kjems J

    更新日期:2017-02-09 00:00:00

  • Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand.

    abstract::Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their intera...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00263

    authors: Ramesh N,Pandey UB

    更新日期:2017-08-22 00:00:00

  • Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells.

    abstract::Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.594319

    authors: Greene AN,Parks LG,Solomon MB,Privette Vinnedge LM

    更新日期:2020-11-16 00:00:00

  • Cryptochrome Is a Regulator of Synaptic Plasticity in the Visual System of Drosophila melanogaster.

    abstract::Drosophila CRYPTOCHROME (CRY) is a blue light sensitive protein with a key role in circadian photoreception. A main feature of CRY is that light promotes an interaction with the circadian protein TIMELESS (TIM) resulting in their ubiquitination and degradation, a mechanism that contributes to the synchronization of th...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00165

    authors: Damulewicz M,Mazzotta GM,Sartori E,Rosato E,Costa R,Pyza EM

    更新日期:2017-05-30 00:00:00

  • M-Calpain Activation Facilitates Seizure Induced KCC2 Down Regulation.

    abstract::Potassium chloride co-transporter 2 (KCC2), a major chloride transporter that maintains GABAA receptor inhibition in mature mammalian neurons, is down-regulated in the hippocampus during epileptogenesis. Impaired KCC2 function accelerates or facilitates seizure onset. Calpain, with two main subtypes of m- and μ-calpai...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00287

    authors: Wan L,Ren L,Chen L,Wang G,Liu X,Wang BH,Wang Y

    更新日期:2018-08-21 00:00:00

  • Activation of Autophagy Contributes to Sevoflurane-Induced Neurotoxicity in Fetal Rats.

    abstract::Numerous animal studies have demonstrated that commonly used general anesthetics may result in cognitive impairment in the immature brain. The prevailing theory is that general anesthetics could induce developmental neurotoxicity via enhanced apoptosis. In addition, inhibited proliferation induced by anesthetics has a...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00432

    authors: Li X,Wu Z,Zhang Y,Xu Y,Han G,Zhao P

    更新日期:2017-12-22 00:00:00

  • RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis.

    abstract::Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss i...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2013.00040

    authors: Heman-Ackah SM,Hallegger M,Rao MS,Wood MJ

    更新日期:2013-11-20 00:00:00

  • Nicotine Prevents Oxidative Stress-Induced Hippocampal Neuronal Injury Through α7-nAChR/Erk1/2 Signaling Pathway.

    abstract::Oxidative stress-induced neuronal damage has been implicated to play a dominant role in neurodegenerative disorders, such as Alzheimer's disease (AD). Nicotine, a principal additive compound for tobacco users, is thought as a candidate to attenuate amyloid-β-mediated neurotoxicity and NMDA-induced excitotoxicity. Prev...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.557647

    authors: Dong Y,Bi W,Zheng K,Zhu E,Wang S,Xiong Y,Chang J,Jiang J,Liu B,Lu Z,Cheng Y

    更新日期:2020-11-12 00:00:00

  • Molecular codes for neuronal individuality and cell assembly in the brain.

    abstract::The brain contains an enormous, but finite, number of neurons. The ability of this limited number of neurons to produce nearly limitless neural information over a lifetime is typically explained by combinatorial explosion; that is, by the exponential amplification of each neuron's contribution through its incorporatio...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00045

    authors: Yagi T

    更新日期:2012-04-12 00:00:00

  • Subsynaptic Domains in Super-Resolution Microscopy: The Treachery of Images.

    abstract::The application of super-resolution optical microscopy to investigating synaptic structures has revealed a highly heterogeneous and variable intra-synaptic organization. Dense subsynaptic protein assemblies named subsynaptic domains or SSDs have been proposed as structural units that regulate the efficacy of neuronal ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00161

    authors: Yang X,Specht CG

    更新日期:2019-07-02 00:00:00

  • Schwann Cell Precursors; Multipotent Glial Cells in Embryonic Nerves.

    abstract::The cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precurso...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00069

    authors: Jessen KR,Mirsky R

    更新日期:2019-03-26 00:00:00

  • Corrigendum: Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    abstract::[This corrects the article on p. 116 in vol. 9, PMID: 27867348.]. ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fnmol.2016.00154

    authors: Jackson KL,Dayton RD,Deverman BE,Klein RL

    更新日期:2016-12-22 00:00:00

  • Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury.

    abstract::Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00109

    authors: Siebold L,Krueger AC,Abdala JA,Figueroa JD,Bartnik-Olson B,Holshouser B,Wilson CG,Ashwal S

    更新日期:2020-06-26 00:00:00

  • Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations.

    abstract::Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Her...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00205

    authors: Huang C,Lu F,Li P,Cao C,Liu Z

    更新日期:2017-06-28 00:00:00

  • Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders.

    abstract::Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00387

    authors: Fisher NM,Seto M,Lindsley CW,Niswender CM

    更新日期:2018-10-23 00:00:00

  • Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    abstract::Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00125

    authors: Teixeira FB,de Oliveira ACA,Leão LKR,Fagundes NCF,Fernandes RM,Fernandes LMP,da Silva MCF,Amado LL,Sagica FES,de Oliveira EHC,Crespo-Lopez ME,Maia CSF,Lima RR

    更新日期:2018-05-15 00:00:00

  • Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses.

    abstract::The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to al...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00010

    authors: Delgado JY,Nall D,Selvin PR

    更新日期:2020-03-13 00:00:00

  • Stimulation of Sphingosine Kinase 1 (SPHK1) Is Beneficial in a Huntington's Disease Pre-clinical Model.

    abstract::Although several agents have been identified to provide therapeutic benefits in Huntington disease (HD), the number of conventionally used treatments remains limited and only symptomatic. Thus, it is plausible that the need to identify new therapeutic targets for the development of alternative and more effective treat...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00100

    authors: Di Pardo A,Pepe G,Castaldo S,Marracino F,Capocci L,Amico E,Madonna M,Giova S,Jeong SK,Park BM,Park BD,Maglione V

    更新日期:2019-04-24 00:00:00

  • Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury.

    abstract::Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the inj...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00101

    authors: Sobrido-Cameán D,Barreiro-Iglesias A

    更新日期:2018-04-03 00:00:00

  • Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy.

    abstract::Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00106

    authors: Dadsetan S,Balzano T,Forteza J,Cabrera-Pastor A,Taoro-Gonzalez L,Hernandez-Rabaza V,Gil-Perotín S,Cubas-Núñez L,García-Verdugo JM,Agusti A,Llansola M,Felipo V

    更新日期:2016-11-02 00:00:00

  • Hypoxic Preconditioning Maintains GLT-1 Against Transient Global Cerebral Ischemia Through Upregulating Cx43 and Inhibiting c-Src.

    abstract::Transient global cerebral ischemia (tGCI) causes excessive release of glutamate from neurons. Astrocytic glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) together play a predominant role in maintaining glutamate at normal extracellular concentrations. Though our previous studies reported the alleviation o...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00344

    authors: Li K,Zhou H,Zhan L,Shi Z,Sun W,Liu D,Liu L,Liang D,Tan Y,Xu W,Xu E

    更新日期:2018-10-01 00:00:00

  • Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion.

    abstract::Mitochondria are key organelles in regulating the metabolic state of a cell. In the brain, mitochondrial oxidative metabolism is the prevailing mechanism for neurons to generate ATP. While it is firmly established that neuronal function is highly dependent on mitochondrial metabolism, it is less well-understood how as...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00040

    authors: Fiebig C,Keiner S,Ebert B,Schäffner I,Jagasia R,Lie DC,Beckervordersandforth R

    更新日期:2019-02-22 00:00:00

  • Bcl11 Transcription Factors Regulate Cortical Development and Function.

    abstract::Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor fami...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00051

    authors: Simon R,Wiegreffe C,Britsch S

    更新日期:2020-04-08 00:00:00

  • Clustered Protocadherins Are Required for Building Functional Neural Circuits.

    abstract::Neuronal identity is generated by the cell-surface expression of clustered protocadherin (Pcdh) isoforms. In mice, 58 isoforms from three gene clusters, Pcdhα, Pcdhβ, and Pcdhγ, are differentially expressed in neurons. Since cis-heteromeric Pcdh oligomers on the cell surface interact homophilically with that in other ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00114

    authors: Hasegawa S,Kobayashi H,Kumagai M,Nishimaru H,Tarusawa E,Kanda H,Sanbo M,Yoshimura Y,Hirabayashi M,Hirabayashi T,Yagi T

    更新日期:2017-04-24 00:00:00

  • Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients.

    abstract::Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00106

    authors: Vrabec K,Boštjančič E,Koritnik B,Leonardis L,Dolenc Grošelj L,Zidar J,Rogelj B,Glavač D,Ravnik-Glavač M

    更新日期:2018-04-04 00:00:00

  • Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    abstract::Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2012.00091

    authors: Haass-Koffler CL,Bartlett SE

    更新日期:2012-09-06 00:00:00

  • Differential Regulation of Syngap1 Translation by FMRP Modulates eEF2 Mediated Response on NMDAR Activity.

    abstract::SYNGAP1, a Synaptic Ras-GTPase activating protein, regulates synapse maturation during a critical developmental window. Heterozygous mutation in SYNGAP1 (SYNGAP1-/+) has been shown to cause Intellectual Disability (ID) in children. Recent studies have provided evidence for altered neuronal protein synthesis in a mouse...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00097

    authors: Paul A,Nawalpuri B,Shah D,Sateesh S,Muddashetty RS,Clement JP

    更新日期:2019-05-09 00:00:00