Structure of Heteropentameric GABAA Receptors and Receptor-Anchoring Properties of Gephyrin.

Abstract:

:γ-Aminobutyric acid type A receptors (GABAARs) mediate the majority of fast synaptic inhibition in the central nervous system (CNS). GABAARs belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGIC) and are assembled from 19 different subunits. As dysfunctional GABAergic neurotransmission manifests itself in neurodevelopmental disorders including epilepsy and anxiety, GABAARs are key drug targets. The majority of synaptic GABAARs are anchored at the inhibitory postsynaptic membrane by the principal scaffolding protein gephyrin, which acts as the central organizer in maintaining the architecture of the inhibitory postsynaptic density (iPSD). This interaction is mediated by the long intracellular loop located in between transmembrane helices 3 and 4 (M3-M4 loop) of the receptors and a universal receptor-binding pocket residing in the C-terminal domain of gephyrin. In 2014, the crystal structure of the β3-homopentameric GABAAR provided crucial information regarding the architecture of the receptor; however, an understanding of the structure and assembly of heteropentameric receptors at the atomic level was lacking. This review article will highlight recent advances in understanding the structure of heteropentameric synaptic GABAARs and how these structures have provided fundamental insights into the assembly of these multi-subunit receptors as well as their modulation by diverse ligands including the physiological agonist GABA. We will further discuss the role of gephyrin in the anchoring of synaptic GABAARs and glycine receptors (GlyRs), which are crucial for maintaining the architecture of the iPSD. Finally, we will also summarize how anti-malarial artemisinin drugs modulate gephyrin-mediated inhibitory neurotransmission.

journal_name

Front Mol Neurosci

authors

Kasaragod VB,Schindelin H

doi

10.3389/fnmol.2019.00191

subject

Has Abstract

pub_date

2019-08-07 00:00:00

pages

191

issn

1662-5099

journal_volume

12

pub_type

杂志文章
  • From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development.

    abstract::Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural c...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00062

    authors: Goyal R,Spencer KA,Borodinsky LN

    更新日期:2020-04-24 00:00:00

  • Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand.

    abstract::Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their intera...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00263

    authors: Ramesh N,Pandey UB

    更新日期:2017-08-22 00:00:00

  • The Binding Properties and Physiological Functions of Recoverin.

    abstract::Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00473

    authors: Zang J,Neuhauss SCF

    更新日期:2018-12-20 00:00:00

  • Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis.

    abstract::Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00433

    authors: Henriques A,Croixmarie V,Bouscary A,Mosbach A,Keime C,Boursier-Neyret C,Walter B,Spedding M,Loeffler JP

    更新日期:2018-01-04 00:00:00

  • Pharmacological c-Jun NH2-Terminal Kinase (JNK) Pathway Inhibition Reduces Severity of Spinal Muscular Atrophy Disease in Mice.

    abstract::Spinal muscular atrophy (SMA) is a severe neurodegenerative disorder that occurs in early childhood. The disease is caused by the deletion/mutation of the survival motor neuron 1 (SMN1) gene resulting in progressive skeletal muscle atrophy and paralysis, due to the degeneration of spinal motor neurons (MNs). Currently...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00308

    authors: Schellino R,Boido M,Borsello T,Vercelli A

    更新日期:2018-09-04 00:00:00

  • Screening the Molecular Framework Underlying Local Dendritic mRNA Translation.

    abstract::In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory s...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00045

    authors: Namjoshi SV,Raab-Graham KF

    更新日期:2017-02-24 00:00:00

  • Cysteines as Redox Molecular Switches and Targets of Disease.

    abstract::Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00167

    authors: Fra A,Yoboue ED,Sitia R

    更新日期:2017-06-06 00:00:00

  • Uncoupling the Trade-Off between Somatic Proteostasis and Reproduction in Caenorhabditis elegans Models of Polyglutamine Diseases.

    abstract::Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link betwe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00101

    authors: Shemesh N,Shai N,Meshnik L,Katalan R,Ben-Zvi A

    更新日期:2017-04-20 00:00:00

  • Neuroblastoma-A Neural Crest Derived Embryonal Malignancy.

    abstract::Neuroblastoma is a neural crest derived malignancy of the peripheral nervous system and is the most common and deadliest tumor of infancy. It is characterized by clinical heterogeneity with a disease spectrum ranging from spontaneous regression without any medical intervention to treatment resistant tumors with metast...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2019.00009

    authors: Johnsen JI,Dyberg C,Wickström M

    更新日期:2019-01-29 00:00:00

  • The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity.

    abstract::The degeneration of dopaminergic neurons during Parkinson's disease (PD) is intimately linked to malfunction of α-synuclein (αSyn), the main component of the proteinaceous intracellular inclusions characteristic for this pathology. The cytotoxicity of αSyn has been attributed to disturbances in several biological proc...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00207

    authors: Aufschnaiter A,Habernig L,Kohler V,Diessl J,Carmona-Gutierrez D,Eisenberg T,Keller W,Büttner S

    更新日期:2017-06-30 00:00:00

  • Circadian clocks and memory: time-place learning.

    abstract::Time-Place learning (TPL) refers to the ability of animals to remember important events that vary in both time and place. This ability is thought to be functional to optimize resource localization and predator avoidance in a circadian changing environment. Various studies have indicated that animals use their circadia...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2013.00008

    authors: Mulder CK,Gerkema MP,Van der Zee EA

    更新日期:2013-04-11 00:00:00

  • Alzheimer's Disease: From Genetic Variants to the Distinct Pathological Mechanisms.

    abstract::Being the most common cause of dementia, AD is a polygenic and neurodegenerative disease. Complex and multiple factors have been shown to be involved in its pathogenesis, of which the genetics play an indispensable role. It is widely accepted that discovery of potential genes related to the pathogenesis of AD would be...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00319

    authors: Sun Q,Xie N,Tang B,Li R,Shen Y

    更新日期:2017-10-06 00:00:00

  • Roles of eIF2α kinases in the pathogenesis of Alzheimer's disease.

    abstract::Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of eukaryotic initiation factor-2α (eIF2α). Evidence is accumulating that persistent eIF2α phosphorylation at Ser51 through prolonged overactivation of regulatory kinases occurs in neurodegenerative diseases such as Alzhe...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2014.00022

    authors: Ohno M

    更新日期:2014-04-16 00:00:00

  • Puzzling Out Synaptic Vesicle 2 Family Members Functions.

    abstract::Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2017.00148

    authors: Bartholome O,Van den Ackerveken P,Sánchez Gil J,de la Brassinne Bonardeaux O,Leprince P,Franzen R,Rogister B

    更新日期:2017-05-22 00:00:00

  • Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in Drosophila melanogaster.

    abstract::Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00238

    authors: Schlichting M,Rieger D,Cusumano P,Grebler R,Costa R,Mazzotta GM,Helfrich-Förster C

    更新日期:2018-07-18 00:00:00

  • The Electrophysiological Determinants of Corticospinal Motor Neuron Vulnerability in ALS.

    abstract::The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiolog...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00073

    authors: Jara JH,Sheets PL,Nigro MJ,Perić M,Brooks C,Heller DB,Martina M,Andjus PR,Ozdinler PH

    更新日期:2020-05-19 00:00:00

  • Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics.

    abstract::GABAergic interneuron diversity is a key feature in the brain that helps to create different brain activity patterns and behavioral states. Cell type classification schemes-based on anatomical, physiological and molecular features-have provided us with a detailed understanding of the distinct types that constitute thi...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00115

    authors: Que L,Winterer J,Földy C

    更新日期:2019-05-07 00:00:00

  • Kv4 Channels Underlie the Subthreshold-Operating A-type K-current in Nociceptive Dorsal Root Ganglion Neurons.

    abstract::The dorsal root ganglion (DRG) contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling. Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K(+) channels; however, the molecular correlate of the co...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.02.003.2009

    authors: Phuket TR,Covarrubias M

    更新日期:2009-07-07 00:00:00

  • Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC).

    abstract::In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-lin...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00043

    authors: Pinto MJ,Pedro JR,Costa RO,Almeida RD

    更新日期:2016-06-10 00:00:00

  • Combinational Treatment of Bioscaffolds and Extracellular Vesicles in Spinal Cord Injury.

    abstract::Spinal cord injury (SCI) can result in an irreversible disability due to loss of sensorimotor function below the lesion. Presently, clinical treatments for SCI mainly include surgery, drugs and postoperative rehabilitation. The prospective roles of bioscaffolds and exosomes in several neurological diseases have been r...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00081

    authors: Wang X,Botchway BOA,Zhang Y,Yuan J,Liu X

    更新日期:2019-04-12 00:00:00

  • Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders.

    abstract::Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2018.00387

    authors: Fisher NM,Seto M,Lindsley CW,Niswender CM

    更新日期:2018-10-23 00:00:00

  • mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain.

    abstract::Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however, no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2016.00139

    authors: John S,Mishra R

    更新日期:2016-12-16 00:00:00

  • Defining the nociceptor transcriptome.

    abstract::Unbiased "omics" techniques, such as next generation RNA-sequencing, can provide entirely novel insights into biological systems. However, cellular heterogeneity presents a significant barrier to analysis and interpretation of these datasets. The neurons of the dorsal root ganglia (DRG) are an important model for stud...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2014.00087

    authors: Thakur M,Crow M,Richards N,Davey GI,Levine E,Kelleher JH,Agley CC,Denk F,Harridge SD,McMahon SB

    更新日期:2014-11-11 00:00:00

  • A Novel Microtubule-Binding Drug Attenuates and Reverses Protein Aggregation in Animal Models of Alzheimer's Disease.

    abstract::Age-progressive neurodegenerative pathologies, including Alzheimer's disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological dis...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00310

    authors: Kakraba S,Ayyadevara S,Penthala NR,Balasubramaniam M,Ganne A,Liu L,Alla R,Bommagani SB,Barger SW,Griffin WST,Crooks PA,Shmookler Reis RJ

    更新日期:2019-12-12 00:00:00

  • Fragile-X Syndrome Is Associated With NMDA Receptor Hypofunction and Reduced Dendritic Complexity in Mature Dentate Granule Cells.

    abstract::Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. It is caused by the overexpansion of cytosine-guanine-guanine (CGG) trinucleotide in Fmr1 gene, resulting in complete loss of the fragile X mental retardation protein (FMRP). Previous studies using Fmr1 knockout (Fmr1 KO) mice have ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00495

    authors: Yau SY,Bettio L,Chiu J,Chiu C,Christie BR

    更新日期:2019-01-17 00:00:00

  • The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency.

    abstract::Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2017.00322

    authors: Janzen D,Schaefer N,Delto C,Schindelin H,Villmann C

    更新日期:2017-10-09 00:00:00

  • Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury.

    abstract::Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2020.00109

    authors: Siebold L,Krueger AC,Abdala JA,Figueroa JD,Bartnik-Olson B,Holshouser B,Wilson CG,Ashwal S

    更新日期:2020-06-26 00:00:00

  • Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients.

    abstract::Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential ...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2018.00106

    authors: Vrabec K,Boštjančič E,Koritnik B,Leonardis L,Dolenc Grošelj L,Zidar J,Rogelj B,Glavač D,Ravnik-Glavač M

    更新日期:2018-04-04 00:00:00

  • PIEZO1 Is Selectively Expressed in Small Diameter Mouse DRG Neurons Distinct From Neurons Strongly Expressing TRPV1.

    abstract::Using a high resolution in situ hybridization technique we have measured PIEZO1, PIEZO2, and TRPV1 transcripts in mouse dorsal root ganglion (DRG) neurons. Consistent with previous studies, PIEZO2 transcripts were highly expressed in DRG neurons of all sizes, including most notably the largest diameter neurons implica...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fnmol.2019.00178

    authors: Wang J,La JH,Hamill OP

    更新日期:2019-07-19 00:00:00

  • Bcl11 Transcription Factors Regulate Cortical Development and Function.

    abstract::Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor fami...

    journal_title:Frontiers in molecular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fnmol.2020.00051

    authors: Simon R,Wiegreffe C,Britsch S

    更新日期:2020-04-08 00:00:00