Modulation of methuselah expression targeted to Drosophila insulin-producing cells extends life and enhances oxidative stress resistance.

Abstract:

:Ubiquitously reduced signaling via Methuselah (MTH), a G-protein-coupled receptor (GPCR) required for neurosecretion, has previously been reported to extend life and enhance stress resistance in flies. Whether these effects are due to reduced MTH signalling in specific tissues remains unknown. We determined that reduced expression of mth targeted to the insulin-producing cells (IPCs) of the fly brain was sufficient to extend life and enhance oxidative stress resistance. Paradoxically, we discovered that overexpression of mth targeted to the same cells has similar phenotypic effects to reduced expression due to MTH's interaction with β-arrestin, which uncouples GPCRs from their G-proteins. We confirmed the functional relationship between MTH and β-arrestin by finding that IPC-targeted overexpression of β-arrestin alone mimics the longevity phenotype of reduced MTH signaling. As reduced MTH signaling also inhibits insulin secretion from the IPCs, the most parsimonious mechanistic explanation of its longevity and stress-resistance enhancement might be through reduced insulin/IGF signaling (IIS). However, examination of phenotypic features of long-lived IPC-mth modulated flies as well as several downstream IIS targets implicates enhanced activity of the JNK stress-resistance pathway more directly than insulin signaling in the longevity and stress-resistance phenotypes.

journal_name

Aging Cell

journal_title

Aging cell

authors

Gimenez LE,Ghildyal P,Fischer KE,Hu H,Ja WW,Eaton BA,Wu Y,Austad SN,Ranjan R

doi

10.1111/acel.12027

subject

Has Abstract

pub_date

2013-02-01 00:00:00

pages

121-9

issue

1

eissn

1474-9718

issn

1474-9726

journal_volume

12

pub_type

杂志文章
  • Identification of stable senescence-associated reference genes.

    abstract::Cellular senescence is a state of permanent cell cycle arrest activated in response to damaging stimuli. Many hallmarks associated with senescent cells are measured by quantitative real-time PCR (qPCR). As the selection of stable reference genes for interpretation of qPCR data is often overlooked, we performed a syste...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12911

    authors: Hernandez-Segura A,Rubingh R,Demaria M

    更新日期:2019-04-01 00:00:00

  • Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.

    abstract::The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide...

    journal_title:Aging cell

    pub_type: 杂志文章,meta分析

    doi:10.1111/acel.12490

    authors: Teumer A,Qi Q,Nethander M,Aschard H,Bandinelli S,Beekman M,Berndt SI,Bidlingmaier M,Broer L,CHARGE Longevity Working Group.,Cappola A,Ceda GP,Chanock S,Chen MH,Chen TC,Chen YD,Chung J,Del Greco Miglianico F,Eriksson J

    更新日期:2016-10-01 00:00:00

  • Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells.

    abstract::The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging- and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21-31 years) and nine old m...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00594.x

    authors: Cristea A,Qaisar R,Edlund PK,Lindblad J,Bengtsson E,Larsson L

    更新日期:2010-10-01 00:00:00

  • Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice.

    abstract::Neurogenesis, which may contribute to the ability of the adult brain to function normally and adapt to disease, nevertheless declines with advancing age. Adult neurogenesis can be enhanced by administration of growth factors, but whether the aged brain remains responsive to these factors is unknown. We compared the ef...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1046/j.1474-9728.2003.00046.x

    authors: Jin K,Sun Y,Xie L,Batteur S,Mao XO,Smelick C,Logvinova A,Greenberg DA

    更新日期:2003-06-01 00:00:00

  • Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain.

    abstract::Age-associated ventriculomegaly is typically attributed to neurodegeneration; however, additional factors might initiate or contribute to progressive ventricular expansion. By directly linking postmortem human MRI sequences with histological features of periventricular tissue, we show that substantial lateral ventricl...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12184

    authors: Shook BA,Lennington JB,Acabchuk RL,Halling M,Sun Y,Peters J,Wu Q,Mahajan A,Fellows DW,Conover JC

    更新日期:2014-04-01 00:00:00

  • Lgr5⁺ amacrine cells possess regenerative potential in the retina of adult mice.

    abstract::Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5(+) cells are generated at late stages of retinal development and exh...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12346

    authors: Chen M,Tian S,Glasgow NG,Gibson G,Yang X,Shiber CE,Funderburgh J,Watkins S,Johnson JW,Schuman JS,Liu H

    更新日期:2015-08-01 00:00:00

  • Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity.

    abstract::Naked mole-rats (Heterocephalus glaber), the longest-lived rodents, live 7-10 times longer than similarly sized mice and exhibit normal activities for approximately 75% of their lives. Little is known about the mechanisms that allow them to delay the aging process and live so long. Neuregulin-1 (NRG-1) signaling is cr...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00772.x

    authors: Edrey YH,Casper D,Huchon D,Mele J,Gelfond JA,Kristan DM,Nevo E,Buffenstein R

    更新日期:2012-04-01 00:00:00

  • Lifespan extension in Caenorhabditis elegans by complete removal of food.

    abstract::A partial reduction in food intake has been found to increase lifespan in many different organisms. We report here a new dietary restriction regimen in the nematode Caenorhabditis elegans, based on the standard agar plate lifespan assay, in which adult worms are maintained in the absence of a bacterial food source. Th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00238.x

    authors: Kaeberlein TL,Smith ED,Tsuchiya M,Welton KL,Thomas JH,Fields S,Kennedy BK,Kaeberlein M

    更新日期:2006-12-01 00:00:00

  • DNA damage response and cellular senescence in tissues of aging mice.

    abstract::The impact of cellular senescence onto aging of organisms is not fully clear, not at least because of the scarcity of reliable data on the mere frequency of senescent cells in aging tissues. Activation of a DNA damage response including formation of DNA damage foci containing activated H2A.X (gamma-H2A.X) at either un...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00481.x

    authors: Wang C,Jurk D,Maddick M,Nelson G,Martin-Ruiz C,von Zglinicki T

    更新日期:2009-06-01 00:00:00

  • The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells.

    abstract::Short telomeres are thought to trigger senescence, most likely through a single - or a group of few - critically shortened telomeres. Such short telomeres are thought to result from a combination of gradual linear shortening resulting from the end replication problem, reflecting the division history of the cell, super...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00568.x

    authors: Bendix L,Horn PB,Jensen UB,Rubelj I,Kolvraa S

    更新日期:2010-06-01 00:00:00

  • The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans.

    abstract::The general control nonderepressible 2 (GCN2) kinase is a nutrient-sensing pathway that responds to amino acids deficiency and induces a genetic program to effectively maintain cellular homeostasis. Here we established the conserved role of Caenorhabditis elegans GCN-2 under amino acid limitation as a translation init...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12101

    authors: Rousakis A,Vlassis A,Vlanti A,Patera S,Thireos G,Syntichaki P

    更新日期:2013-10-01 00:00:00

  • NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice.

    abstract::While NLRP3-inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inf...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13050

    authors: Marín-Aguilar F,Lechuga-Vieco AV,Alcocer-Gómez E,Castejón-Vega B,Lucas J,Garrido C,Peralta-Garcia A,Pérez-Pulido AJ,Varela-López A,Quiles JL,Ryffel B,Flores I,Bullón P,Ruiz-Cabello J,Cordero MD

    更新日期:2020-01-01 00:00:00

  • Lifespan of long-lived growth hormone receptor knockout mice was not normalized by housing at 30°C since weaning.

    abstract::Growth hormone receptor knockout (GHRKO) mice are remarkably long-lived and have improved glucose homeostasis along with altered energy metabolism which manifests through decreased respiratory quotient (RQ) and increased oxygen consumption (VO2 ). Short-term exposure of these animals to increased environmental tempera...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13123

    authors: Fang Y,McFadden S,Darcy J,Hascup ER,Hascup KN,Bartke A

    更新日期:2020-05-01 00:00:00

  • Telomerase reverse transcriptase haploinsufficiency and telomere length in individuals with 5p- syndrome.

    abstract::Telomerase, which maintains the ends of chromosomes, consists of two core components, the telomerase reverse transcriptase (TERT) and the telomerase RNA (TERC). Haploinsufficiency for TERC or TERT leads to progressive telomere shortening and autosomal dominant dyskeratosis congenita (DC). The clinical manifestations o...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00324.x

    authors: Du HY,Idol R,Robledo S,Ivanovich J,An P,Londono-Vallejo A,Wilson DB,Mason PJ,Bessler M

    更新日期:2007-10-01 00:00:00

  • A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation.

    abstract::Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extra...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12356

    authors: Mao J,Huang S,Liu S,Feng XL,Yu M,Liu J,Sun YE,Chen G,Yu Y,Zhao J,Pei G

    更新日期:2015-10-01 00:00:00

  • A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans.

    abstract::Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age-related diseases. These effects occur through highly complicated cell-to-cell ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12141

    authors: Lezzerini M,Budovskaya Y

    更新日期:2014-02-01 00:00:00

  • Mitochondrially encoded methionine is inversely related to longevity in mammals.

    abstract::Methionine residues in proteins react readily with reactive oxygen species making them particularly sensitive to oxidation. However, because oxidized methionine can be reduced back in a catalyzed reaction, it has been suggested that methionine residues act as oxidant scavengers, protecting not only the proteins where ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00657.x

    authors: Aledo JC,Li Y,de Magalhães JP,Ruíz-Camacho M,Pérez-Claros JA

    更新日期:2011-04-01 00:00:00

  • FOXO protects against age-progressive axonal degeneration.

    abstract::Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12701

    authors: Hwang I,Oh H,Santo E,Kim DY,Chen JW,Bronson RT,Locasale JW,Na Y,Lee J,Reed S,Toth M,Yu WH,Muller FL,Paik J

    更新日期:2018-02-01 00:00:00

  • Molecular mechanisms underlying genotype-dependent responses to dietary restriction.

    abstract::Dietary restriction (DR) increases lifespan and attenuates age-related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large-scale effort to define molecular mechanisms that underlie genotype-spe...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12130

    authors: Schleit J,Johnson SC,Bennett CF,Simko M,Trongtham N,Castanza A,Hsieh EJ,Moller RM,Wasko BM,Delaney JR,Sutphin GL,Carr D,Murakami CJ,Tocchi A,Xian B,Chen W,Yu T,Goswami S,Higgins S,Holmberg M,Jeong KS,Kim JR,Kl

    更新日期:2013-12-01 00:00:00

  • Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition.

    abstract::Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00519.x

    authors: Gavilán MP,Pintado C,Gavilán E,Jiménez S,Ríos RM,Vitorica J,Castaño A,Ruano D

    更新日期:2009-12-01 00:00:00

  • Selective induction of calcineurin activity and signaling by oligomeric amyloid beta.

    abstract::Alzheimer's disease (AD) is a terminal age-associated dementia characterized by early synaptic dysfunction and late neurodegeneration. Although the presence of plaques of fibrillar aggregates of the amyloid beta peptide (Abeta) is a signature of AD, evidence suggests that the preplaque small oligomeric Abeta promotes ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00434.x

    authors: Reese LC,Zhang W,Dineley KT,Kayed R,Taglialatela G

    更新日期:2008-12-01 00:00:00

  • Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.

    abstract::The accumulation of mitochondrial DNA (mtDNA) mutations has been proposed as an underlying cause of the aging process. Such mutations are thought to be generated principally through mechanisms involving oxidative stress. Skin is frequently exposed to a potent mutagen in the form of ultraviolet (UV) radiation and mtDNA...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00310.x

    authors: Birket MJ,Birch-Machin MA

    更新日期:2007-08-01 00:00:00

  • Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.

    abstract::Protein synthesis is a regulated cellular process that links nutrients in the environment to organismal growth and development. Here we examine the role of genes that regulate mRNA translation in determining growth, reproduction, stress resistance and lifespan. Translational control of protein synthesis by regulators ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00266.x

    authors: Pan KZ,Palter JE,Rogers AN,Olsen A,Chen D,Lithgow GJ,Kapahi P

    更新日期:2007-02-01 00:00:00

  • Fat tissue, aging, and cellular senescence.

    abstract::Fat tissue, frequently the largest organ in humans, is at the nexus of mechanisms involved in longevity and age-related metabolic dysfunction. Fat distribution and function change dramatically throughout life. Obesity is associated with accelerated onset of diseases common in old age, while fat ablation and certain mu...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/j.1474-9726.2010.00608.x

    authors: Tchkonia T,Morbeck DE,Von Zglinicki T,Van Deursen J,Lustgarten J,Scrable H,Khosla S,Jensen MD,Kirkland JL

    更新日期:2010-10-01 00:00:00

  • A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4.

    abstract::Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al., 19...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00585.x

    authors: Smith JA,Ndoye AM,Geary K,Lisanti MP,Igoucheva O,Daniel R

    更新日期:2010-08-01 00:00:00

  • KCa 3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress.

    abstract::Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR t...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12502

    authors: Choi S,Kim JA,Li HY,Shin KO,Oh GT,Lee YM,Oh S,Pewzner-Jung Y,Futerman AH,Suh SH

    更新日期:2016-10-01 00:00:00

  • Experimental insights into age-exacerbated cognitive dysfunction after peripheral surgery.

    abstract::Here I comment on the recent contribution by Barrientos et al. J. Neurosci. 32, 14641-14648 (2012) addressing treatment possibilities for surgery-induced cognitive dysfunction. It has been over 15 years since the publication of a landmark study that indicated age as a major risk factor for postoperative cognitive dysf...

    journal_title:Aging cell

    pub_type: 评论,杂志文章

    doi:10.1111/acel.12066

    authors: Fidalgo AR

    更新日期:2013-06-01 00:00:00

  • Expression patterns of cardiac aging in Drosophila.

    abstract::Aging causes cardiac dysfunction, often leading to heart failure and death. The molecular basis of age-associated changes in cardiac structure and function is largely unknown. The fruit fly, Drosophila melanogaster, is well-suited to investigate the genetics of cardiac aging. Flies age rapidly over the course of weeks...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12559

    authors: Cannon L,Zambon AC,Cammarato A,Zhang Z,Vogler G,Munoz M,Taylor E,Cartry J,Bernstein SI,Melov S,Bodmer R

    更新日期:2017-02-01 00:00:00

  • Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection.

    abstract::Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether a...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12315

    authors: Toth P,Tarantini S,Springo Z,Tucsek Z,Gautam T,Giles CB,Wren JD,Koller A,Sonntag WE,Csiszar A,Ungvari Z

    更新日期:2015-06-01 00:00:00

  • An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress.

    abstract::Cockayne syndrome (CS) is a rare hereditary multisystem disease characterized by neurological and development impairment, and premature aging. Cockayne syndrome cells are hypersensitive to oxidative stress, but the molecular mechanisms involved remain unresolved. Here we provide the first evidence that primary fibrobl...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00815.x

    authors: Pascucci B,Lemma T,Iorio E,Giovannini S,Vaz B,Iavarone I,Calcagnile A,Narciso L,Degan P,Podo F,Roginskya V,Janjic BM,Van Houten B,Stefanini M,Dogliotti E,D'Errico M

    更新日期:2012-06-01 00:00:00