Expression patterns of cardiac aging in Drosophila.

Abstract:

:Aging causes cardiac dysfunction, often leading to heart failure and death. The molecular basis of age-associated changes in cardiac structure and function is largely unknown. The fruit fly, Drosophila melanogaster, is well-suited to investigate the genetics of cardiac aging. Flies age rapidly over the course of weeks, benefit from many tools to easily manipulate their genome, and their heart has significant genetic and phenotypic similarities to the human heart. Here, we performed a cardiac-specific gene expression study on aging Drosophila and carried out a comparative meta-analysis with published rodent data. Pathway level transcriptome comparisons suggest that age-related, extra-cellular matrix remodeling and alterations in mitochondrial metabolism, protein handling, and contractile functions are conserved between Drosophila and rodent hearts. However, expression of only a few individual genes similarly changed over time between and even within species. We also examined gene expression in single fly hearts and found significant variability as has been reported in rodents. We propose that individuals may arrive at similar cardiac aging phenotypes via dissimilar transcriptional changes, including those in transcription factors and micro-RNAs. Finally, our data suggest the transcription factor Odd-skipped, which is essential for normal heart development, is also a crucial regulator of cardiac aging.

journal_name

Aging Cell

journal_title

Aging cell

authors

Cannon L,Zambon AC,Cammarato A,Zhang Z,Vogler G,Munoz M,Taylor E,Cartry J,Bernstein SI,Melov S,Bodmer R

doi

10.1111/acel.12559

subject

Has Abstract

pub_date

2017-02-01 00:00:00

pages

82-92

issue

1

eissn

1474-9718

issn

1474-9726

journal_volume

16

pub_type

杂志文章
  • MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

    abstract::In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00695.x

    authors: Lustgarten MS,Jang YC,Liu Y,Qi W,Qin Y,Dahia PL,Shi Y,Bhattacharya A,Muller FL,Shimizu T,Shirasawa T,Richardson A,Van Remmen H

    更新日期:2011-06-01 00:00:00

  • Identification of stable senescence-associated reference genes.

    abstract::Cellular senescence is a state of permanent cell cycle arrest activated in response to damaging stimuli. Many hallmarks associated with senescent cells are measured by quantitative real-time PCR (qPCR). As the selection of stable reference genes for interpretation of qPCR data is often overlooked, we performed a syste...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12911

    authors: Hernandez-Segura A,Rubingh R,Demaria M

    更新日期:2019-04-01 00:00:00

  • Caenorhabditis elegans integrates food and reproductive signals in lifespan determination.

    abstract::Dietary restriction extends lifespan and inhibits reproduction in many species. In Caenorhabditis elegans, inhibiting reproduction by germline removal extends lifespan. Therefore, we asked whether the effect of dietary restriction on lifespan might proceed via changes in the activity of the germline. We found that die...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00327.x

    authors: Crawford D,Libina N,Kenyon C

    更新日期:2007-10-01 00:00:00

  • Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice.

    abstract::Little is known about how diet and energy metabolism interact in determination of lifespan under ad libitum feeding. From 12 weeks of age until death, male and female wild-type (WT) and transgenic (TG) mice with increased skeletal muscle mitochondrial uncoupling (HSA-mUCP1 mice) were fed one of three different semisyn...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00648.x

    authors: Keipert S,Voigt A,Klaus S

    更新日期:2011-02-01 00:00:00

  • Mitochondrially encoded methionine is inversely related to longevity in mammals.

    abstract::Methionine residues in proteins react readily with reactive oxygen species making them particularly sensitive to oxidation. However, because oxidized methionine can be reduced back in a catalyzed reaction, it has been suggested that methionine residues act as oxidant scavengers, protecting not only the proteins where ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00657.x

    authors: Aledo JC,Li Y,de Magalhães JP,Ruíz-Camacho M,Pérez-Claros JA

    更新日期:2011-04-01 00:00:00

  • The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.

    abstract::The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of d...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12344

    authors: Zhu Y,Tchkonia T,Pirtskhalava T,Gower AC,Ding H,Giorgadze N,Palmer AK,Ikeno Y,Hubbard GB,Lenburg M,O'Hara SP,LaRusso NF,Miller JD,Roos CM,Verzosa GC,LeBrasseur NK,Wren JD,Farr JN,Khosla S,Stout MB,McGowan SJ,Fuh

    更新日期:2015-08-01 00:00:00

  • Neuronal expression of a single-subunit yeast NADH-ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan.

    abstract::The 'rate of living' theory predicts that longevity should be inversely correlated with the rate of mitochondrial respiration. However, recent studies in a number of model organisms, including mice, have reported that interventions that retard the aging process are, in fact, associated with an increase in mitochondria...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00546.x

    authors: Bahadorani S,Cho J,Lo T,Contreras H,Lawal HO,Krantz DE,Bradley TJ,Walker DW

    更新日期:2010-04-01 00:00:00

  • Characterization of the direct targets of FOXO transcription factors throughout evolution.

    abstract::FOXO transcription factors (FOXOs) are central regulators of lifespan across species, yet they also have cell-specific functions, including adult stem cell homeostasis and immune function. Direct targets of FOXOs have been identified genome-wide in several species and cell types. However, whether FOXO targets are spec...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12479

    authors: Webb AE,Kundaje A,Brunet A

    更新日期:2016-08-01 00:00:00

  • Smurf2-mediated ubiquitination and degradation of Id1 regulates p16 expression during senescence.

    abstract::The inhibitor of differentiation or DNA binding (Id) family of transcription regulators plays an important role in cell proliferation, differentiation, and senescence. However, regulation of Id expression during these processes is poorly understood. Id proteins are known to undergo rapid turnover mediated by the ubiqu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00746.x

    authors: Kong Y,Cui H,Zhang H

    更新日期:2011-12-01 00:00:00

  • Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans.

    abstract::Exposure to sub-lethal levels of stress, or hormesis, was a means to induce longevity. By screening for mutations that enhance resistance to multiple stresses, we identified multiple alleles of alpha-1,2-mannosidase I (mas1) which, in addition to promoting stress resistance, also extended longevity. Longevity enhancem...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00471.x

    authors: Liu YL,Lu WC,Brummel TJ,Yuh CH,Lin PT,Kao TY,Li FY,Liao PC,Benzer S,Wang HD

    更新日期:2009-08-01 00:00:00

  • Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks.

    abstract::Aging involves coordinated yet distinct changes in organs and systems throughout life, including changes in essential trace elements. However, how aging affects tissue element composition (ionome) and how these changes lead to dysfunction and disease remain unclear. Here, we quantified changes in the ionome across eig...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13119

    authors: Zhang B,Podolskiy DI,Mariotti M,Seravalli J,Gladyshev VN

    更新日期:2020-05-01 00:00:00

  • The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells.

    abstract::Short telomeres are thought to trigger senescence, most likely through a single - or a group of few - critically shortened telomeres. Such short telomeres are thought to result from a combination of gradual linear shortening resulting from the end replication problem, reflecting the division history of the cell, super...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00568.x

    authors: Bendix L,Horn PB,Jensen UB,Rubelj I,Kolvraa S

    更新日期:2010-06-01 00:00:00

  • Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence.

    abstract::The age-associated decline of immune responses causes high susceptibility to infections and reduced vaccine efficacy in the elderly. However, the mechanisms underlying age-related deficits are unclear. Here, we found that the expression and signaling of flagellin (FlaB)-dependent Toll-like receptor 5 (TLR5), unlike th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12383

    authors: Lim JS,Nguyen KC,Nguyen CT,Jang IS,Han JM,Fabian C,Lee SE,Rhee JH,Cho KA

    更新日期:2015-10-01 00:00:00

  • Gene expression analysis of mTOR pathway: association with human longevity.

    abstract::mTOR signalling is implicated in the development of disease and in lifespan extension in model organisms. This pathway has been associated with human diseases such as diabetes and cancer, but has not been investigated for its impact on longevity per se. Here, we investigated whether transcriptional variation within th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12015

    authors: Passtoors WM,Beekman M,Deelen J,van der Breggen R,Maier AB,Guigas B,Derhovanessian E,van Heemst D,de Craen AJ,Gunn DA,Pawelec G,Slagboom PE

    更新日期:2013-02-01 00:00:00

  • Accelerated food source location in aging Drosophila.

    abstract::Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila mel...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12361

    authors: Egenriether SM,Chow ES,Krauth N,Giebultowicz JM

    更新日期:2015-10-01 00:00:00

  • Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability.

    abstract::The aim of this study was to investigate changes in astrocyte density, morphology, proliferation and apoptosis occurring in the central nervous system during physiological aging. Astrocytes in retinal whole-mount preparations from Wistar rats aged 3 (young adult) to 25 months (aged) were investigated qualitatively and...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00402.x

    authors: Mansour H,Chamberlain CG,Weible MW 2nd,Hughes S,Chu Y,Chan-Ling T

    更新日期:2008-08-01 00:00:00

  • Hot topics in aging research: protein translation and TOR signaling, 2010.

    abstract::In this, the fourth installment of our annual Hot Topics review on mRNA translation and aging, we have decided to expand our scope to include recent findings related to the role of TOR signaling in aging. As new data emerge, it is clear that TOR signaling acts upstream of mRNA translation, as well as a variety of othe...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00665.x

    authors: Kaeberlein M,Kennedy BK

    更新日期:2011-04-01 00:00:00

  • Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline.

    abstract::The transcription of ribosomal RNA genes (rDNA) is subject to epigenetic regulation, as it is abrogated by the methylation of CpG dinucleotides within their promoter region. Here, we investigated, through Sequenom platform, the age-related methylation status of the CpG island falling into the rDNA promoter in 472 bloo...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12603

    authors: D'Aquila P,Montesanto A,Mandalà M,Garasto S,Mari V,Corsonello A,Bellizzi D,Passarino G

    更新日期:2017-10-01 00:00:00

  • A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4.

    abstract::Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al., 19...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00585.x

    authors: Smith JA,Ndoye AM,Geary K,Lisanti MP,Igoucheva O,Daniel R

    更新日期:2010-08-01 00:00:00

  • Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.

    abstract::Oxidative modification of cellular components may contribute to tissue dysfunction during aging. In skeletal muscle, contractile activity increases the generation of reactive oxygen and nitrogen species (ROS). The question of whether contraction-induced ROS generation is further increased in skeletal muscle of the eld...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00198.x

    authors: Vasilaki A,Mansouri A,Van Remmen H,van der Meulen JH,Larkin L,Richardson AG,McArdle A,Faulkner JA,Jackson MJ

    更新日期:2006-04-01 00:00:00

  • Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells.

    abstract::Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality c...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12544

    authors: Franzen J,Zirkel A,Blake J,Rath B,Benes V,Papantonis A,Wagner W

    更新日期:2017-02-01 00:00:00

  • Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial.

    abstract::Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would ...

    journal_title:Aging cell

    pub_type: 杂志文章,多中心研究,随机对照试验

    doi:10.1111/acel.13039

    authors: Walton RG,Dungan CM,Long DE,Tuggle SC,Kosmac K,Peck BD,Bush HM,Villasante Tezanos AG,McGwin G,Windham ST,Ovalle F,Bamman MM,Kern PA,Peterson CA

    更新日期:2019-12-01 00:00:00

  • "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease.

    abstract::The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of c...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/acel.13109

    authors: Rao CV,Asch AS,Carr DJJ,Yamada HY

    更新日期:2020-03-01 00:00:00

  • Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging.

    abstract::Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12365

    authors: Chaker Z,Aïd S,Berry H,Holzenberger M

    更新日期:2015-10-01 00:00:00

  • Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway.

    abstract::Klotho is a recently discovered anti-aging gene. The purpose of this study was to investigate whether klotho gene transfer attenuates superoxide production and oxidative stress in rat aorta smooth muscle (RASM) cells. RASM cells were transfected with AAV plasmids carrying mouse klotho full-length cDNA (mKL) or LacZ as...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00796.x

    authors: Wang Y,Kuro-o M,Sun Z

    更新日期:2012-06-01 00:00:00

  • Attenuation of ataxia telangiectasia mutated signalling mitigates age-associated intervertebral disc degeneration.

    abstract::Previously, we reported that persistent DNA damage accelerates ageing of the spine, but the mechanisms behind this process are not well understood. Ataxia telangiectasia mutated (ATM) is a protein kinase involved in the DNA damage response, which controls cell fate, including cell death. To test the role of ATM in the...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13162

    authors: Han Y,Zhou CM,Shen H,Tan J,Dong Q,Zhang L,McGowan SJ,Zhao J,Sowa GA,Kang JD,Niedernhofer LJ,Robbins PD,Vo NN

    更新日期:2020-07-01 00:00:00

  • Naturally occurring genetic variation in the age-specific immune response of Drosophila melanogaster.

    abstract::Immunosenescence, the age-related decline in immune response, is a well-known consequence of aging. To date, most studies of age-related changes in immune response focused on the cellular and physiological bases of this decline; we have virtually no understanding of the genetic basis of age-related changes in the immu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00219.x

    authors: Lesser KJ,Paiusi IC,Leips J

    更新日期:2006-08-01 00:00:00

  • The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans.

    abstract::Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis eleg...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12154

    authors: Goh GY,Martelli KL,Parhar KS,Kwong AW,Wong MA,Mah A,Hou NS,Taubert S

    更新日期:2014-02-01 00:00:00

  • Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice.

    abstract::Moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling has an essential role in maintenance of healthy cognitive function. In advanced age, increased oxidative stress and cerebromicrovascular endothelial dysfunction impair neurovascular coupling, likely contributing to age-related decline ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12731

    authors: Tarantini S,Valcarcel-Ares NM,Yabluchanskiy A,Fulop GA,Hertelendy P,Gautam T,Farkas E,Perz A,Rabinovitch PS,Sonntag WE,Csiszar A,Ungvari Z

    更新日期:2018-04-01 00:00:00

  • Hsp90β interacts with MDM2 to suppress p53-dependent senescence during skeletal muscle regeneration.

    abstract::Cellular senescence plays both beneficial and detrimental roles in embryonic development and tissue regeneration, while the underlying mechanism remains elusive. Recent studies disclosed the emerging roles of heat-shock proteins in regulating muscle regeneration and homeostasis. Here, we found that Hsp90β, but not Hsp...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13003

    authors: He MY,Xu SB,Qu ZH,Guo YM,Liu XC,Cong XX,Wang JF,Low BC,Li L,Wu Q,Lin P,Yan SG,Bao Z,Zhou YT,Zheng LL

    更新日期:2019-10-01 00:00:00