Caenorhabditis elegans integrates food and reproductive signals in lifespan determination.

Abstract:

:Dietary restriction extends lifespan and inhibits reproduction in many species. In Caenorhabditis elegans, inhibiting reproduction by germline removal extends lifespan. Therefore, we asked whether the effect of dietary restriction on lifespan might proceed via changes in the activity of the germline. We found that dietary restriction could increase the lifespan of animals lacking the entire reproductive system. Thus, dietary restriction can extend lifespan independently of any reproductive input. However, dietary restriction produced little or no increase in the long lifespan of animals that lack germ cells. Thus, germline removal and dietary restriction may potentially activate lifespan-extending pathways that ultimately converge on the same downstream longevity mechanisms. In well-fed animals, the somatic reproductive tissues are generally completely required for germline removal to extend lifespan. We found that this was not the case in animals subjected to dietary restriction. In addition, in these animals, loss of the germline could either further lengthen lifespan or shorten lifespan, depending on the genetic background. Thus, nutrient levels play an important role in determining how the reproductive system influences longevity.

journal_name

Aging Cell

journal_title

Aging cell

authors

Crawford D,Libina N,Kenyon C

doi

10.1111/j.1474-9726.2007.00327.x

subject

Has Abstract

pub_date

2007-10-01 00:00:00

pages

715-21

issue

5

eissn

1474-9718

issn

1474-9726

pii

ACE327

journal_volume

6

pub_type

杂志文章
  • A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans.

    abstract::Although dietary restriction (DR) is known to extend lifespan across species, from yeast to mammals, the signalling events downstream of food/nutrient perception are not well understood. In Caenorhabditis elegans, DR is typically attained either by using the eat-2 mutants that have reduced pharyngeal pumping leading t...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12218

    authors: Chamoli M,Singh A,Malik Y,Mukhopadhyay A

    更新日期:2014-08-01 00:00:00

  • Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.

    abstract::Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging an...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12124

    authors: Kohler J,Popov C,Klotz B,Alberton P,Prall WC,Haasters F,Müller-Deubert S,Ebert R,Klein-Hitpass L,Jakob F,Schieker M,Docheva D

    更新日期:2013-12-01 00:00:00

  • The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.

    abstract::The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of d...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12344

    authors: Zhu Y,Tchkonia T,Pirtskhalava T,Gower AC,Ding H,Giorgadze N,Palmer AK,Ikeno Y,Hubbard GB,Lenburg M,O'Hara SP,LaRusso NF,Miller JD,Roos CM,Verzosa GC,LeBrasseur NK,Wren JD,Farr JN,Khosla S,Stout MB,McGowan SJ,Fuh

    更新日期:2015-08-01 00:00:00

  • SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation.

    abstract::SIRT4 modulates energy homeostasis in multiple cell types and tissues. However, its role in meiotic oocytes remains unknown. Here, we report that mouse oocytes overexpressing SIRT4 are unable to completely progress through meiosis, showing the inadequate mitochondrial redistribution, lowered ATP content, elevated reac...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12789

    authors: Zeng J,Jiang M,Wu X,Diao F,Qiu D,Hou X,Wang H,Li L,Li C,Ge J,Liu J,Ou X,Wang Q

    更新日期:2018-08-01 00:00:00

  • Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation.

    abstract::Amyloid-β 1-42 accumulation is the major pathogenetic event in Alzheimer's disease (AD), believed to be responsible for synaptic dysfunction and neuronal cell death. However, the physiologic activity of Aβ peptides remains elusive: Aβ might not only play a toxic role, but also act as a functional signaling intermediat...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00854.x

    authors: Guglielmotto M,Monteleone D,Boido M,Piras A,Giliberto L,Borghi R,Vercelli A,Fornaro M,Tabaton M,Tamagno E

    更新日期:2012-10-01 00:00:00

  • Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver.

    abstract::Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, alt...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12742

    authors: Whitton H,Singh LN,Patrick MA,Price AJ,Osorio FG,López-Otín C,Bochkis IM

    更新日期:2018-06-01 00:00:00

  • Doubled lifespan and patient-like pathologies in progeria mice fed high-fat diet.

    abstract::Hutchinson-Gilford Progeria Syndrome (HGPS) is a devastating premature aging disease. Mouse models have been instrumental for understanding HGPS mechanisms and for testing therapies, which to date have had only marginal benefits in mice and patients. Barriers to developing effective therapies include the unknown etiol...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12852

    authors: Kreienkamp R,Billon C,Bedia-Diaz G,Albert CJ,Toth Z,Butler AA,McBride-Gagyi S,Ford DA,Baldan A,Burris TP,Gonzalo S

    更新日期:2019-02-01 00:00:00

  • Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging.

    abstract::Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefit...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12341

    authors: Crane JD,MacNeil LG,Lally JS,Ford RJ,Bujak AL,Brar IK,Kemp BE,Raha S,Steinberg GR,Tarnopolsky MA

    更新日期:2015-08-01 00:00:00

  • Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice.

    abstract::H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase loca...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2008.00432.x

    authors: Chen L,Na R,Gu M,Salmon AB,Liu Y,Liang H,Qi W,Van Remmen H,Richardson A,Ran Q

    更新日期:2008-12-01 00:00:00

  • Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin.

    abstract::Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isol...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00526.x

    authors: Rittié L,Stoll SW,Kang S,Voorhees JJ,Fisher GJ

    更新日期:2009-12-01 00:00:00

  • Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity.

    abstract::During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulat...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12618

    authors: Guillory B,Chen JA,Patel S,Luo J,Splenser A,Mody A,Ding M,Baghaie S,Anderson B,Iankova B,Halder T,Hernandez Y,Garcia JM

    更新日期:2017-08-01 00:00:00

  • Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension.

    abstract::Experimental ocular hypertension induces senescence of retinal ganglion cells (RGCs) that mimics events occurring in human glaucoma. Senescence-related chromatin remodeling leads to profound transcriptional changes including the upregulation of a subset of genes that encode multiple proteins collectively referred to a...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13089

    authors: Rocha LR,Nguyen Huu VA,Palomino La Torre C,Xu Q,Jabari M,Krawczyk M,Weinreb RN,Skowronska-Krawczyk D

    更新日期:2020-02-01 00:00:00

  • Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices.

    abstract::Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental ind...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13259

    authors: Amargant F,Manuel SL,Tu Q,Parkes WS,Rivas F,Zhou LT,Rowley JE,Villanueva CE,Hornick JE,Shekhawat GS,Wei JJ,Pavone ME,Hall AR,Pritchard MT,Duncan FE

    更新日期:2020-11-01 00:00:00

  • Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast.

    abstract::Dietary restriction is arguably the most promising nonpharmacological intervention to extend human life and health span. Yet, only few genetic regulators mediating the cellular response to dietary restriction are known, and the question remains which other regulatory factors are involved. Here, we measured at the geno...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12749

    authors: Campos SE,Avelar-Rivas JA,Garay E,Juárez-Reyes A,DeLuna A

    更新日期:2018-06-01 00:00:00

  • Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans.

    abstract::Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified sl...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00640.x

    authors: Mouchiroud L,Molin L,Kasturi P,Triba MN,Dumas ME,Wilson MC,Halestrap AP,Roussel D,Masse I,Dallière N,Ségalat L,Billaud M,Solari F

    更新日期:2011-02-01 00:00:00

  • A dual role for integrin-linked kinase and β1-integrin in modulating cardiac aging.

    abstract::Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin-linked kinase (ilk) and β1-integrin (myospheroid, mys) in Dr...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12193

    authors: Nishimura M,Kumsta C,Kaushik G,Diop SB,Ding Y,Bisharat-Kernizan J,Catan H,Cammarato A,Ross RS,Engler AJ,Bodmer R,Hansen M,Ocorr K

    更新日期:2014-06-01 00:00:00

  • Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle.

    abstract::Sarcopenia, loss of skeletal muscle mass, is a hallmark of aging commonly attributed to a decreased capacity to maintain muscle tissue in senescence, yet the mechanism behind the muscle wasting remains unresolved. To address these issues we have explored a rodent model of sarcopenia and age-related sensorimotor impair...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9728.2005.00145.x

    authors: Edström E,Ulfhake B

    更新日期:2005-04-01 00:00:00

  • Molecular mechanisms underlying genotype-dependent responses to dietary restriction.

    abstract::Dietary restriction (DR) increases lifespan and attenuates age-related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large-scale effort to define molecular mechanisms that underlie genotype-spe...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12130

    authors: Schleit J,Johnson SC,Bennett CF,Simko M,Trongtham N,Castanza A,Hsieh EJ,Moller RM,Wasko BM,Delaney JR,Sutphin GL,Carr D,Murakami CJ,Tocchi A,Xian B,Chen W,Yu T,Goswami S,Higgins S,Holmberg M,Jeong KS,Kim JR,Kl

    更新日期:2013-12-01 00:00:00

  • Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast.

    abstract::Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age-dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12099

    authors: Ballew BJ,Lundblad V

    更新日期:2013-08-01 00:00:00

  • The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes.

    abstract::The deleterious reactive carbonyls released upon oxidation of polyunsaturated fatty acids in biological membranes are believed to foster cellular aging. Comparative studies in mammals and birds have shown that the susceptibility to peroxidation of membrane lipids peroxidation index (PI) is negatively correlated with l...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00847.x

    authors: Munro D,Blier PU

    更新日期:2012-10-01 00:00:00

  • DNA damage response and cellular senescence in tissues of aging mice.

    abstract::The impact of cellular senescence onto aging of organisms is not fully clear, not at least because of the scarcity of reliable data on the mere frequency of senescent cells in aging tissues. Activation of a DNA damage response including formation of DNA damage foci containing activated H2A.X (gamma-H2A.X) at either un...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00481.x

    authors: Wang C,Jurk D,Maddick M,Nelson G,Martin-Ruiz C,von Zglinicki T

    更新日期:2009-06-01 00:00:00

  • Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice.

    abstract::Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial-tar...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12102

    authors: Siegel MP,Kruse SE,Percival JM,Goh J,White CC,Hopkins HC,Kavanagh TJ,Szeto HH,Rabinovitch PS,Marcinek DJ

    更新日期:2013-10-01 00:00:00

  • Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction.

    abstract::Caloric restriction (CR) can delay onset of several age-related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12576

    authors: Fujii N,Narita T,Okita N,Kobayashi M,Furuta Y,Chujo Y,Sakai M,Yamada A,Takeda K,Konishi T,Sudo Y,Shimokawa I,Higami Y

    更新日期:2017-06-01 00:00:00

  • Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.

    abstract::Protein synthesis is a regulated cellular process that links nutrients in the environment to organismal growth and development. Here we examine the role of genes that regulate mRNA translation in determining growth, reproduction, stress resistance and lifespan. Translational control of protein synthesis by regulators ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00266.x

    authors: Pan KZ,Palter JE,Rogers AN,Olsen A,Chen D,Lithgow GJ,Kapahi P

    更新日期:2007-02-01 00:00:00

  • Emerging roles of extracellular vesicles in cellular senescence and aging.

    abstract::Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammato...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/acel.12734

    authors: Takasugi M

    更新日期:2018-04-01 00:00:00

  • Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.

    abstract::Oxidative modification of cellular components may contribute to tissue dysfunction during aging. In skeletal muscle, contractile activity increases the generation of reactive oxygen and nitrogen species (ROS). The question of whether contraction-induced ROS generation is further increased in skeletal muscle of the eld...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2006.00198.x

    authors: Vasilaki A,Mansouri A,Van Remmen H,van der Meulen JH,Larkin L,Richardson AG,McArdle A,Faulkner JA,Jackson MJ

    更新日期:2006-04-01 00:00:00

  • Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model.

    abstract::Incidence of intracerebral hemorrhage (ICH) and brain iron accumulation increases with age. Excess iron accumulation in brain tissues post-ICH induces oxidative stress and neuronal damage. However, the mechanisms underlying iron deregulation in ICH, especially in the aged ICH model have not been well elucidated. Ferro...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13235

    authors: Bao WD,Zhou XT,Zhou LT,Wang F,Yin X,Lu Y,Zhu LQ,Liu D

    更新日期:2020-11-01 00:00:00

  • PAPP-A: a new anti-aging target?

    abstract::This article focuses on the role of PAPP-A in mammalian aging. It introduces PAPP-A and a little of its history, briefly discusses the function of PAPP-A in the insulin-like growth factor (IGF) system and the regulators of PAPP-A expression, and then reviews data concerning PAPP-A in aging and age-related diseases esp...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/j.1474-9726.2010.00630.x

    authors: Conover CA

    更新日期:2010-12-01 00:00:00

  • Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults.

    abstract::Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise-induced improvement in insulin sensitivity and car...

    journal_title:Aging cell

    pub_type: 杂志文章,随机对照试验

    doi:10.1111/acel.12880

    authors: Konopka AR,Laurin JL,Schoenberg HM,Reid JJ,Castor WM,Wolff CA,Musci RV,Safairad OD,Linden MA,Biela LM,Bailey SM,Hamilton KL,Miller BF

    更新日期:2019-02-01 00:00:00

  • The true face of JNK activation in apoptosis.

    abstract::Age-associated changes in apoptotic rates have been observed in a number of different tissues. While the implications of these findings remain unclear, a better understanding of how apoptosis is regulated may further our understanding of the aging process. The role of the JNK pathway in apoptosis has been highly contr...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1046/j.1474-9728.2002.00014.x

    authors: Lin A,Dibling B

    更新日期:2002-12-01 00:00:00