MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

Abstract:

:In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy.

journal_name

Aging Cell

journal_title

Aging cell

authors

Lustgarten MS,Jang YC,Liu Y,Qi W,Qin Y,Dahia PL,Shi Y,Bhattacharya A,Muller FL,Shimizu T,Shirasawa T,Richardson A,Van Remmen H

doi

10.1111/j.1474-9726.2011.00695.x

subject

Has Abstract

pub_date

2011-06-01 00:00:00

pages

493-505

issue

3

eissn

1474-9718

issn

1474-9726

journal_volume

10

pub_type

杂志文章
  • Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats.

    abstract::Aging is inevitably accompanied by gradual and irreversible innate endothelial dysfunction. In this study, we tested the hypothesis that accentuation of glucose metabolism via the aldose reductase (AR) pathway contributes to age-related vascular dysfunction. AR protein and activity levels were significantly increased ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00606.x

    authors: Hallam KM,Li Q,Ananthakrishnan R,Kalea A,Zou YS,Vedantham S,Schmidt AM,Yan SF,Ramasamy R

    更新日期:2010-10-01 00:00:00

  • Changes at the nuclear lamina alter binding of pioneer factor Foxa2 in aged liver.

    abstract::Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age-dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina-associated domains (LADs) using lamin B1 ChIP-Seq in young and old hepatocytes and find that, alt...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12742

    authors: Whitton H,Singh LN,Patrick MA,Price AJ,Osorio FG,López-Otín C,Bochkis IM

    更新日期:2018-06-01 00:00:00

  • Plasma proteomic profile of frailty.

    abstract::Frailty is a state of decreased physiological reserve and increased vulnerability to adverse outcomes in aging, and is characterized by dysregulation across various biological pathways. Frailty may manifest biologically as alteration in protein expression, possibly regulated at genetic, transcriptional and epigenetic ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13193

    authors: Sathyan S,Ayers E,Gao T,Milman S,Barzilai N,Verghese J

    更新日期:2020-09-01 00:00:00

  • How age and infection history shape the antigen-specific CD8+ T-cell repertoire: Implications for vaccination strategies in older adults.

    abstract::Older adults often show signs of impaired CD8+ T-cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T-cell numbers and repertoire diversity. If this is ...

    journal_title:Aging cell

    pub_type: 杂志文章,评审

    doi:10.1111/acel.13262

    authors: Lanfermeijer J,Borghans JAM,van Baarle D

    更新日期:2020-11-01 00:00:00

  • Genetic differences and longevity-related phenotypes influence lifespan and lifespan variation in a sex-specific manner in mice.

    abstract::Epidemiological studies of human longevity found two interesting features, robust advantage of female lifespan and consistent reduction of lifespan variation. To help understand the genetic aspects of these phenomena, the current study examined sex differences and variation of longevity using previously published mous...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13263

    authors: Yuan R,Musters CJM,Zhu Y,Evans TR,Sun Y,Chesler EJ,Peters LL,Harrison DE,Bartke A

    更新日期:2020-11-01 00:00:00

  • Preserving transcriptional stress responses as an anti-aging strategy.

    abstract::The progressively increasing frailty, morbidity and mortality of aging organisms coincides with, and may be causally related to, their waning ability to adapt to environmental perturbations. Transcriptional responses to challenges, such as oxidative stress or pathogens, diminish with age. This effect is manifest in th...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13297

    authors: Cheng Y,Pitoniak A,Wang J,Bohmann D

    更新日期:2021-01-20 00:00:00

  • Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling.

    abstract::Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13261

    authors: Bose C,Alves I,Singh P,Palade PT,Carvalho E,Børsheim E,Jun SR,Cheema A,Boerma M,Awasthi S,Singh SP

    更新日期:2020-11-01 00:00:00

  • Dietary restriction of rodents decreases aging rate without affecting initial mortality rate -- a meta-analysis.

    abstract::Dietary restriction (DR) extends lifespan in multiple species from various taxa. This effect can arise via two distinct but not mutually exclusive ways: a change in aging rate and/or vulnerability to the aging process (i.e. initial mortality rate). When DR affects vulnerability, this lowers mortality instantly, wherea...

    journal_title:Aging cell

    pub_type: 杂志文章,meta分析

    doi:10.1111/acel.12061

    authors: Simons MJ,Koch W,Verhulst S

    更新日期:2013-06-01 00:00:00

  • Testing the 'free radical theory of aging' hypothesis: physiological differences in long-lived and short-lived colubrid snakes.

    abstract::We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00287.x

    authors: Robert KA,Brunet-Rossinni A,Bronikowski AM

    更新日期:2007-06-01 00:00:00

  • DNA damage response and cellular senescence in tissues of aging mice.

    abstract::The impact of cellular senescence onto aging of organisms is not fully clear, not at least because of the scarcity of reliable data on the mere frequency of senescent cells in aging tissues. Activation of a DNA damage response including formation of DNA damage foci containing activated H2A.X (gamma-H2A.X) at either un...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2009.00481.x

    authors: Wang C,Jurk D,Maddick M,Nelson G,Martin-Ruiz C,von Zglinicki T

    更新日期:2009-06-01 00:00:00

  • Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts.

    abstract::Little is known about the types and numbers of mutations that may accumulate in normal human cells with age. Such information would require obtaining enough DNA from a single cell to accurately carry out reliable analysis despite extensive amplification; and complete genomic coverage under these circumstances is diffi...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12053

    authors: Hsieh JC,Van Den Berg D,Kang H,Hsieh CL,Lieber MR

    更新日期:2013-04-01 00:00:00

  • Low plasma lysophosphatidylcholines are associated with impaired mitochondrial oxidative capacity in adults in the Baltimore Longitudinal Study of Aging.

    abstract::The decrease in skeletal muscle mitochondrial oxidative capacity with age adversely affects muscle strength and physical performance. Factors that are associated with this decrease have not been well characterized. Low plasma lysophosphatidylcholines (LPC), a major class of systemic bioactive lipids, are predictive of...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12915

    authors: Semba RD,Zhang P,Adelnia F,Sun K,Gonzalez-Freire M,Salem N Jr,Brennan N,Spencer RG,Fishbein K,Khadeer M,Shardell M,Moaddel R,Ferrucci L

    更新日期:2019-04-01 00:00:00

  • Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation.

    abstract::Pre-lamin A and progerin have been implicated in normal aging, and the pathogenesis of age-related degenerative diseases is termed 'laminopathies'. Here, we show that mature lamin A has an essential role in cellular fitness and that oxidative damage to lamin A is involved in cellular senescence. Primary human dermal f...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00750.x

    authors: Pekovic V,Gibbs-Seymour I,Markiewicz E,Alzoghaibi F,Benham AM,Edwards R,Wenhert M,von Zglinicki T,Hutchison CJ

    更新日期:2011-12-01 00:00:00

  • Telomere-independent cellular senescence in human fetal cardiomyocytes.

    abstract::Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 populati...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9728.2004.00137.x

    authors: Ball AJ,Levine F

    更新日期:2005-02-01 00:00:00

  • Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults.

    abstract::Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise-induced improvement in insulin sensitivity and car...

    journal_title:Aging cell

    pub_type: 杂志文章,随机对照试验

    doi:10.1111/acel.12880

    authors: Konopka AR,Laurin JL,Schoenberg HM,Reid JJ,Castor WM,Wolff CA,Musci RV,Safairad OD,Linden MA,Biela LM,Bailey SM,Hamilton KL,Miller BF

    更新日期:2019-02-01 00:00:00

  • Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study.

    abstract::Cross-sectional studies have repeatedly suggested peripheral blood monocyte telomere length as a biomarker of aging. To test this suggestion in a large population-based follow-up study of the oldest old, we measured telomere length at baseline in 598 participants of the Leiden 85-plus Study (mean age at baseline 89.8 ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2005.00171.x

    authors: Martin-Ruiz CM,Gussekloo J,van Heemst D,von Zglinicki T,Westendorp RG

    更新日期:2005-12-01 00:00:00

  • Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers.

    abstract::Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting both the hippocampus and the cerebral cortex. Reduced synaptic density that occurs early in the disease process seems to be partially due to the overactivation of N-methyl-d-aspartate receptors (NMDARs) leading to excitotoxicity. Recently, ...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2012.00848.x

    authors: Costa RO,Lacor PN,Ferreira IL,Resende R,Auberson YP,Klein WL,Oliveira CR,Rego AC,Pereira CM

    更新日期:2012-10-01 00:00:00

  • The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells.

    abstract::Short telomeres are thought to trigger senescence, most likely through a single - or a group of few - critically shortened telomeres. Such short telomeres are thought to result from a combination of gradual linear shortening resulting from the end replication problem, reflecting the division history of the cell, super...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00568.x

    authors: Bendix L,Horn PB,Jensen UB,Rubelj I,Kolvraa S

    更新日期:2010-06-01 00:00:00

  • Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.

    abstract::The accumulation of mitochondrial DNA (mtDNA) mutations has been proposed as an underlying cause of the aging process. Such mutations are thought to be generated principally through mechanisms involving oxidative stress. Skin is frequently exposed to a potent mutagen in the form of ultraviolet (UV) radiation and mtDNA...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2007.00310.x

    authors: Birket MJ,Birch-Machin MA

    更新日期:2007-08-01 00:00:00

  • KCa 3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress.

    abstract::Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR t...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12502

    authors: Choi S,Kim JA,Li HY,Shin KO,Oh GT,Lee YM,Oh S,Pewzner-Jung Y,Futerman AH,Suh SH

    更新日期:2016-10-01 00:00:00

  • FOXO protects against age-progressive axonal degeneration.

    abstract::Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12701

    authors: Hwang I,Oh H,Santo E,Kim DY,Chen JW,Bronson RT,Locasale JW,Na Y,Lee J,Reed S,Toth M,Yu WH,Muller FL,Paik J

    更新日期:2018-02-01 00:00:00

  • A neuroprotective role for the DNA damage checkpoint in tauopathy.

    abstract::ATM and p53, effectors of the DNA damage checkpoint, are generally considered pro-apoptotic in neurons. We show that DNA damage and checkpoint activation occurs in postmitotic neurons in animal models of tauopathy, neurodegenerative disorders that include Alzheimer's disease. Surprisingly, checkpoint attenuation poten...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2011.00778.x

    authors: Khurana V,Merlo P,DuBoff B,Fulga TA,Sharp KA,Campbell SD,Götz J,Feany MB

    更新日期:2012-04-01 00:00:00

  • Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans.

    abstract::Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified sl...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/j.1474-9726.2010.00640.x

    authors: Mouchiroud L,Molin L,Kasturi P,Triba MN,Dumas ME,Wilson MC,Halestrap AP,Roussel D,Masse I,Dallière N,Ségalat L,Billaud M,Solari F

    更新日期:2011-02-01 00:00:00

  • Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction.

    abstract::Caloric restriction (CR) can delay onset of several age-related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissu...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12576

    authors: Fujii N,Narita T,Okita N,Kobayashi M,Furuta Y,Chujo Y,Sakai M,Yamada A,Takeda K,Konishi T,Sudo Y,Shimokawa I,Higami Y

    更新日期:2017-06-01 00:00:00

  • Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice.

    abstract::Aging impairs arterial function through oxidative stress and diminished nitric oxide (NO) bioavailability. Life-long caloric restriction (CR) reduces oxidative stress, but its impact on arterial aging is incompletely understood. We tested the hypothesis that life-long CR attenuates key features of arterial aging. Bloo...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12103

    authors: Donato AJ,Walker AE,Magerko KA,Bramwell RC,Black AD,Henson GD,Lawson BR,Lesniewski LA,Seals DR

    更新日期:2013-10-01 00:00:00

  • O-GlcNAcylation of protein kinase A catalytic subunits enhances its activity: a mechanism linked to learning and memory deficits in Alzheimer's disease.

    abstract::Alzheimer's disease (AD) is characterized clinically by memory loss and cognitive decline. Protein kinase A (PKA)-CREB signaling plays a critical role in learning and memory. It is known that glucose uptake and O-GlcNAcylation are reduced in AD brain. In this study, we found that PKA catalytic subunits (PKAcs) were po...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12449

    authors: Xie S,Jin N,Gu J,Shi J,Sun J,Chu D,Zhang L,Dai CL,Gu JH,Gong CX,Iqbal K,Liu F

    更新日期:2016-06-01 00:00:00

  • Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome.

    abstract::Hutchinson-Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/n...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.13152

    authors: Mu X,Tseng C,Hambright WS,Matre P,Lin CY,Chanda P,Chen W,Gu J,Ravuri S,Cui Y,Zhong L,Cooke JP,Niedernhofer LJ,Robbins PD,Huard J

    更新日期:2020-08-01 00:00:00

  • Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality.

    abstract::The level of Sirt2 protein is reduced in oocytes from aged mice, while exogenous expression of Sirt2 could ameliorate the maternal age-associated meiotic defects. To date, the underlying mechanism remains unclear. Here, we confirmed that specific depletion of Sirt2 disrupts maturational progression and spindle/chromos...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12698

    authors: Qiu D,Hou X,Han L,Li X,Ge J,Wang Q

    更新日期:2018-02-01 00:00:00

  • Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age-related insulin resistance.

    abstract::While age-related insulin resistance and hyperinsulinemia are usually considered to be secondary to changes in muscle, the liver also plays a key role in whole-body insulin handling and its role in age-related changes in insulin homeostasis is largely unknown. Here, we show that patent pores called 'fenestrations' are...

    journal_title:Aging cell

    pub_type: 杂志文章

    doi:10.1111/acel.12481

    authors: Mohamad M,Mitchell SJ,Wu LE,White MY,Cordwell SJ,Mach J,Solon-Biet SM,Boyer D,Nines D,Das A,Catherine Li SY,Warren A,Hilmer SN,Fraser R,Sinclair DA,Simpson SJ,de Cabo R,Le Couteur DG,Cogger VC

    更新日期:2016-08-01 00:00:00

  • Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial.

    abstract::Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would ...

    journal_title:Aging cell

    pub_type: 杂志文章,多中心研究,随机对照试验

    doi:10.1111/acel.13039

    authors: Walton RG,Dungan CM,Long DE,Tuggle SC,Kosmac K,Peck BD,Bush HM,Villasante Tezanos AG,McGwin G,Windham ST,Ovalle F,Bamman MM,Kern PA,Peterson CA

    更新日期:2019-12-01 00:00:00