Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.

Abstract:

:Biodegradable magnesium alloy stents (MAS) could present improved long-term clinical performances over commercial bare metal or drug-eluting stents. However, MAS were found to show limited mechanical support for diseased vessels due to fast degradation. Optimizing stent design through finite element analysis (FEA) is an efficient way to improve such properties. Following previous FEA works on design optimization and degradation modeling of MAS, this work carried out an experimental validation for the developed FEA model, thus proving its practical applicability of simulating MAS degradation. Twelve stent samples of AZ31B were manufactured according to two MAS designs (an optimized one and a conventional one), with six samples of each design. All the samples were balloon expanded and subsequently immersed in D-Hanks' solution for a degradation test lasting 14 days. The experimental results showed that the samples of the optimized design had better corrosion resistance than those of the conventional design. Furthermore, the degradation process of the samples was dominated by uniform and stress corrosion. With the good match between the simulation and the experimental results, the work shows that the FEA numerical modeling constitutes an effective tool for design and thus the improvement of novel biodegradable MAS.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Wu W,Chen S,Gastaldi D,Petrini L,Mantovani D,Yang K,Tan L,Migliavacca F

doi

10.1016/j.actbio.2012.10.035

subject

Has Abstract

pub_date

2013-11-01 00:00:00

pages

8730-9

issue

10

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(12)00527-2

journal_volume

9

pub_type

杂志文章
  • Porous silicon as a potential electrode material in a nerve repair setting: Tissue reactions.

    abstract::We compared porous silicon (pSi) with smooth Si as chip-implant surfaces in a nerve regeneration setting. Silicon chips can be used for recording neural activity and are potential nerve interface devices. A silicon chip with one smooth and one porous side inserted into a tube was used to bridge a 5 mm defect in rat sc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.02.010

    authors: Johansson F,Wallman L,Danielsen N,Schouenborg J,Kanje M

    更新日期:2009-07-01 00:00:00

  • Quantum dots in biomedical applications.

    abstract::Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2019.05.022

    authors: Wagner AM,Knipe JM,Orive G,Peppas NA

    更新日期:2019-08-01 00:00:00

  • Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis.

    abstract::Osteoporosis is one of the most prevalent age-related diseases worldwide and is characterized by a systemic deterioration of bone strength (bone mineral density and bone quality) with a resulting increase in fragility fractures. Due to the complex osteoporotic pathological environment, it is a huge challenge to induce...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.06.024

    authors: Zhao Y,Li Z,Jiang Y,Liu H,Feng Y,Wang Z,Liu H,Wang J,Yang B,Lin Q

    更新日期:2020-09-01 00:00:00

  • Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.

    abstract:UNLABELLED:ECM-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. Cartilage ECM has recently shown potential to be chondroinductive, particularly in...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.04.019

    authors: Beck EC,Barragan M,Tadros MH,Gehrke SH,Detamore MS

    更新日期:2016-07-01 00:00:00

  • Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.

    abstract::Synthetic polymer microarray technology holds remarkable promise to rapidly identify suitable biomaterials for stem cell and tissue engineering applications. However, most of previous microarrayed synthetic polymers do not possess biological ligands (e.g., peptides) to directly engage cell surface receptors. Here, we ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.09.006

    authors: Jia J,Coyle RC,Richards DJ,Berry CL,Barrs RW,Biggs J,James Chou C,Trusk TC,Mei Y

    更新日期:2016-11-01 00:00:00

  • Nanoengineered injectable hydrogels for wound healing application.

    abstract::We report injectable nanoengineered hemostats for enhanced wound healing and tissue regeneration. The nanoengineered system consists of the natural polysaccharide, κ-carrageenan (κCA), loaded with synthetic two-dimensional (2D) nanosilicates. Nanoengineered hydrogels showed shear-thinning characteristics and can be in...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.01.045

    authors: Lokhande G,Carrow JK,Thakur T,Xavier JR,Parani M,Bayless KJ,Gaharwar AK

    更新日期:2018-04-01 00:00:00

  • Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems.

    abstract::Molecular imprinting is a new and rapidly evolving technique used to create synthetic receptors and it possesses great potential in a number of applications in the life sciences. Keeping in mind the therapeutic importance of 5-fluorouracil (5-FU) and the technological significance of molecular imprinting polymers, the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2008.03.017

    authors: Singh B,Chauhan N

    更新日期:2008-09-01 00:00:00

  • Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.

    abstract::The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chos...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.07.012

    authors: Surrao DC,Waldman SD,Amsden BG

    更新日期:2012-11-01 00:00:00

  • An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway.

    abstract::Arginase 1 (ARG1) inactivates T cells by degrading L-arginine, severely reducing the immunotherapeutic efficacy. Effectively blocking the ARG1 pathway remains a challenge. L-norvaline is a very cheap and negligible side effects inhibitor of ARG1. However, its blockage efficacy for ARG1 is impeded by its high half-maxi...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2021.01.041

    authors: Ren X,Wang N,Zhou Y,Song A,Jin G,Li Z,Luan Y

    更新日期:2021-01-29 00:00:00

  • Production of ascorbic acid releasing biomaterials for pelvic floor repair.

    abstract:OBJECTIVE:An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffol...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.10.019

    authors: Mangır N,Bullock AJ,Roman S,Osman N,Chapple C,MacNeil S

    更新日期:2016-01-01 00:00:00

  • Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells.

    abstract::Engineered three-dimensional biomaterials are known to affect the regenerative capacity of stem cells. The extent to which these materials can modify cellular activities is still poorly understood, particularly for adipose-derived stem cells (ASCs). This study evaluates PEGylated fibrin (P-fibrin) gels as an ASC-carry...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.01.012

    authors: Chung E,Rytlewski JA,Merchant AG,Dhada KS,Lewis EW,Suggs LJ

    更新日期:2015-04-01 00:00:00

  • An overview of thin film nitinol endovascular devices.

    abstract::Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-pr...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2015.03.025

    authors: Shayan M,Chun Y

    更新日期:2015-07-01 00:00:00

  • Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder.

    abstract::One of the challenges of using bioactive bone cements is adjusting their handling properties for clinical application. To resolve the poorer handling properties of bioactive bone cements we developed a novel bioactive bone cement containing a unique polymethylmethacrylate (PMMA) powder, termed SPD-PMMA (40 μm in diame...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.06.006

    authors: Fukuda C,Goto K,Imamura M,Neo M,Nakamura T

    更新日期:2011-10-01 00:00:00

  • Visible light-induced crosslinkable gelatin.

    abstract::A novel visible light-crosslinkable porcine gelatin was prepared for gelation and micropatterning. The preparation employed a photo-oxidation-induced crosslinking mechanism. First, furfuryl groups were incorporated into the gelatin. Second, the modified gelatin was mixed in water with Rose Bengal, which is a visible l...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.05.018

    authors: Son TI,Sakuragi M,Takahashi S,Obuse S,Kang J,Fujishiro M,Matsushita H,Gong J,Shimizu S,Tajima Y,Yoshida Y,Suzuki K,Yamamoto T,Nakamura M,Ito Y

    更新日期:2010-10-01 00:00:00

  • Predicting and understanding collagen remodeling in human native heart valves during early development.

    abstract::The hemodynamic functionality of heart valves strongly depends on the distribution of collagen fibers, which are their main load-bearing constituents. It is known that collagen networks remodel in response to mechanical stimuli. Yet, the complex interplay between external load and collagen remodeling is poorly underst...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.040

    authors: Ristori T,Bouten CVC,Baaijens FPT,Loerakker S

    更新日期:2018-10-15 00:00:00

  • Nano-scale modification of titanium implant surfaces to enhance osseointegration.

    abstract::The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2019.05.045

    authors: Souza JCM,Sordi MB,Kanazawa M,Ravindran S,Henriques B,Silva FS,Aparicio C,Cooper LF

    更新日期:2019-08-01 00:00:00

  • Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo-photothermal therapy.

    abstract::Lanreotide (LT), a synthetic analog of somatostatin, has been demonstrated to specifically bind to somatostatin receptors (SSTRs), which are widely overexpressed in several types of cancer cells. In this study, we incorporated a chemotherapeutic agent, methotrexate (MTX), and a photosensitizer material, polyaniline (P...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.12.033

    authors: Nguyen HT,Phung CD,Thapa RK,Pham TT,Tran TH,Jeong JH,Ku SK,Choi HG,Yong CS,Kim JO

    更新日期:2018-03-01 00:00:00

  • Rheological characterization of human brain tissue.

    abstract::The rheology of ultrasoft materials like the human brain is highly sensitive to regional and temporal variations and to the type of loading. While recent experiments have shaped our understanding of the time-independent, hyperelastic response of human brain tissue, its time-dependent behavior under various loading con...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.06.024

    authors: Budday S,Sommer G,Haybaeck J,Steinmann P,Holzapfel GA,Kuhl E

    更新日期:2017-09-15 00:00:00

  • Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.

    abstract::We here present the first successful report on combining nanostructured silk and poly(ε-caprolactone) (PCL) with a ceramic scaffold to produce a composite scaffold that is highly porous (porosity ∼85%, pore size ∼500 μm, ∼100% interconnectivity), strong and non-brittle with a surface that resembles extracellular matri...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.10.009

    authors: Roohani-Esfahani SI,Lu ZF,Li JJ,Ellis-Behnke R,Kaplan DL,Zreiqat H

    更新日期:2012-01-01 00:00:00

  • Characterization of polyethylene wear particle: The impact of methodology.

    abstract::Due to the prevalence of problems caused by wear particles, the reduced durability of total joint replacements is well documented. The characterization of wear debris enables the size and morphology of these wear particles to be measured and provides an assessment of the biological response in vivo. However, the impac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.07.039

    authors: Schröder C,Reinders J,Zietz C,Utzschneider S,Bader R,Kretzer JP

    更新日期:2013-12-01 00:00:00

  • Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.

    abstract::Photoreactive poly(ethylene glycol) (PEG) was prepared and the polymer was photoimmobilized on organic, inorganic and metal surfaces to reduce their interaction with proteins and cells. The photoreactive PEG was synthesized by co-polymerization of methacrylate-PEG and acryloyl 4-azidobenzene. Surface modification was ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.05.010

    authors: Ito Y,Hasuda H,Sakuragi M,Tsuzuki S

    更新日期:2007-11-01 00:00:00

  • Degradation and hemostatic properties of polyphosphate coacervates.

    abstract:UNLABELLED:Sodium polyphosphate is a linear polymer formed from phosphate units linked together by sharing oxygen atoms. Addition of calcium to a solution of sodium polyphosphate results in phase separation and formation of a polyphosphate coacervate best described as a polymeric rich viscoelastic material. Polyphospha...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.06.002

    authors: Momeni A,Filiaggi MJ

    更新日期:2016-09-01 00:00:00

  • The resorption of nanocrystalline calcium phosphates by osteoclast-like cells.

    abstract::Nanocrystalline calcium phosphates containing carbonate have a high similarity to bone mineral. The reactions of bone cells (primary osteoblasts and osteoclast-like cells) on these materials as well as on sintered beta-tricalcium phosphate and hydroxyapatite (HA) confirmed a good biocompatibility of the nanocrystallin...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.03.003

    authors: Detsch R,Hagmeyer D,Neumann M,Schaefer S,Vortkamp A,Wuelling M,Ziegler G,Epple M

    更新日期:2010-08-01 00:00:00

  • Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research.

    abstract::The pathology of multiple sclerosis (MS) is typified by focal demyelinated areas of the brain and spinal cord, which results in axonal degeneration and atrophy. Although the field has made much progress in developing immunomodulatory therapies to reduce the occurrence of these focal lesions, there is a conspicuous lac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.08.030

    authors: Eigel D,Zoupi L,Sekizar S,Welzel PB,Werner C,Williams A,Newland B

    更新日期:2019-10-01 00:00:00

  • Chitosan layered gold nanorods as synergistic therapeutics for photothermal ablation and gene silencing in triple-negative breast cancer.

    abstract:UNLABELLED:Small interfering RNAs (siRNAs) are extensively studied due to their promising potential as therapeutic agents for a wide variety of diseases, including cancer. However, efficient delivery of siRNAs to target cells and tissues is problematic due to a lack of suitable delivery vehicles. In this work, we devel...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.07.026

    authors: Yang Z,Liu T,Xie Y,Sun Z,Liu H,Lin J,Liu C,Mao ZW,Nie S

    更新日期:2015-10-01 00:00:00

  • Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.

    abstract::Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.015

    authors: Yang Y,Chu L,Yang S,Zhang H,Qin L,Guillaume O,Eglin D,Richards RG,Tang T

    更新日期:2018-10-01 00:00:00

  • Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.

    abstract::As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to m...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.01.062

    authors: Yan Y,Fu J,Wang T,Lu X

    更新日期:2017-03-15 00:00:00

  • In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications.

    abstract::Recent studies indicate that there is a great demand to optimize pure Zn with tunable degradation rates and more desirable biocompatibility as orthopedic implants. Metal matrix composite (MMC) can be a promising approach for this purpose. In this study, MMC with pure Zn as a matrix and hydroxyapatite (HA) as reinforce...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.007

    authors: Yang H,Qu X,Lin W,Wang C,Zhu D,Dai K,Zheng Y

    更新日期:2018-04-15 00:00:00

  • T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects.

    abstract::Decellularized nerve, or acellular nerve allografts (ANAs), are an increasingly used alternative to nerve autografts to repair nerve gaps to facilitate regeneration. The adaptive immune system, specifically T cells, plays a role in promoting regeneration upon these ANA scaffolds. However, how T cells promote regenerat...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.05.009

    authors: Pan D,Hunter DA,Schellhardt L,Fuchs A,Halevi AE,Snyder-Warwick AK,Mackinnon SE,Wood MD

    更新日期:2020-08-01 00:00:00

  • Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies.

    abstract::The synthesis of microspheres for tissue regeneration requires good control over the particle size and size distribution. This is particularly important when considering the immune response that may be triggered by the presence of particles in tissue. This report outlines the design of an injectable microsphere system...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.03.014

    authors: Tawagi E,Ganesh T,Cheng HM,Santerre JP

    更新日期:2019-04-15 00:00:00