Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel.

Abstract:

UNLABELLED:ECM-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. Cartilage ECM has recently shown potential to be chondroinductive, particularly in a hydrogel-based system, which may be revolutionary in orthopedic medicine. However, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. The objective was therefore to create an unprecedented hydrogel derived entirely from native cartilage ECM that was both mechanically more similar to native cartilage tissue and capable of inducing chondrogenesis. Porcine cartilage was decellularized, solubilized, and then methacrylated and UV photocrosslinked to create methacrylated solubilized decellularized cartilage (MeSDCC) gels. Methacrylated gelatin (GelMA) was employed as a control for both biomechanics and bioactivity. Rat bone marrow-derived mesenchymal stem cells were encapsulated in these networks, which were cultured in vitro for 6weeks, where chondrogenic gene expression, the compressive modulus, swelling, and histology were analyzed. One day after crosslinking, the elastic compressive modulus of the 20% MeSDCC gels was 1070±150kPa. Most notably, the stress strain profile of the 20% MeSDCC gels fell within the 95% confidence interval range of native porcine cartilage. Additionally, MeSDCC gels significantly upregulated chondrogenic genes compared to GelMA as early as day 1 and supported extensive matrix synthesis as observed histologically. Given that these gels approached the mechanics of native cartilage tissue, supported matrix synthesis, and induced chondrogenic gene expression, MeSDCC hydrogels may be promising materials for cartilage tissue engineering applications. Future efforts will focus on improving fracture mechanics as well to benefit overall biomechanical performance. STATEMENT OF SIGNIFICANCE:Extracellular matrix (ECM)-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. One such ECM-based material, cartilage ECM, has recently shown potential to be chondroinductive; however, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. Therefore, this work is significant because we were the first to create hydrogels derived entirely from cartilage ECM that had mechanical properties similar to that of native cartilage until hydrogel failure. Furthermore, these hydrogels had a compressive modulus of 1070±150kPa, they were chondroinductive, and they supported extensive matrix synthesis. In the current study, we have shown that these new hydrogels may prove to be a promising biomaterial for cartilage tissue engineering applications.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Beck EC,Barragan M,Tadros MH,Gehrke SH,Detamore MS

doi

10.1016/j.actbio.2016.04.019

subject

Has Abstract

pub_date

2016-07-01 00:00:00

pages

94-105

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(16)30174-X

journal_volume

38

pub_type

杂志文章
  • In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics.

    abstract::This study concerns the preparation and in vitro characterization of an apatite-wollastonite-2M bioactive glass ceramic which is intended to be used for the regeneration of hard tissue (i.e. in dental and craniomaxillofacial surgery). This bioglass ceramic has been obtained by appropriate thermal treatment through the...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.12.027

    authors: Magallanes-Perdomo M,De Aza AH,Mateus AY,Teixeira S,Monteiro FJ,De Aza S,Pena P

    更新日期:2010-06-01 00:00:00

  • Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.

    abstract::Large three-dimensional poly(glycerol sebacate) (PGS)/poly(l-lactic acid) (PLLA) scaffolds with similar bulk mechanical properties to native low and high stress adapted adipose tissue were fabricated via a freeze-drying and a subsequent curing process. PGS/PLLA scaffolds containing 73vol.% PGS were prepared using two ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.03.004

    authors: Frydrych M,Román S,MacNeil S,Chen B

    更新日期:2015-05-01 00:00:00

  • Corneal reinforcement using an acellular dermal matrix for an analysis of biocompatibility, mechanical properties, and transparency.

    abstract::The aim of this study was to analyze the viability of using an acellular dermal matrix (ADM) as a reinforcement material for peripheral corneal thinning disease. The complete removal of cell components was confirmed by hematoxylin and eosin (H&E) and 4',6-diamidino-2-phenylindole (DAPI) staining. Transmission electron...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.05.004

    authors: Liu Z,Ji J,Zhang J,Huang C,Meng Z,Qiu W,Li X,Wang W

    更新日期:2012-09-01 00:00:00

  • Inhibition of LPS-induced proinflammatory responses of J774.2 macrophages by immobilized enzymatically tailored pectins.

    abstract::The surface of an implant device can be modified by immobilizing biological molecules on it to improve its integration into the host tissue. We have previously demonstrated that enzymatically tailored plant pectins are promising nanocoatings for biomaterials. This study investigates whether a coating of modified hairy...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.03.031

    authors: Gallet M,Vayssade M,Morra M,Verhoef R,Perrone S,Cascardo G,Vigneron P,Schols HA,Nagel MD

    更新日期:2009-09-01 00:00:00

  • Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.

    abstract::This study assessed the role of immobilized cell adhesion moieties on controlling the cellular attachment, adhesion and phenotype of cardiac muscle cells towards developing scaffolds for cardiac muscle tissue engineering. Collagen I, laminin and the cell-adhesive oligopeptide, arginine-glycine-aspartic acid (RGD) at c...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.05.011

    authors: LaNasa SM,Bryant SJ

    更新日期:2009-10-01 00:00:00

  • Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors.

    abstract::An important aim of bone regenerative medicine is to design biomaterials with controlled chemical and topographical features to guide stem cell fate towards osteoblasts without addition of specific osteogenic factors. Herein, we find that sprayed bioactive and biocompatible calcium phosphate substrates (CaP) with cont...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.11.042

    authors: Mechiche Alami S,Rammal H,Boulagnon-Rombi C,Velard F,Lazar F,Drevet R,Laurent Maquin D,Gangloff SC,Hemmerlé J,Voegel JC,Francius G,Schaaf P,Boulmedais F,Kerdjoudj H

    更新日期:2017-02-01 00:00:00

  • Steroid-eluting contact lenses for corneal and intraocular inflammation.

    abstract::Ocular inflammation is one of the leading causes of blindness worldwide, and steroids in topical ophthalmic solutions (e.g. dexamethasone eye drops) are the mainstay of therapy for ocular inflammation. For many non-infectious ocular inflammatory diseases, such as uveitis, eye drops are administered as often as once ev...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.08.013

    authors: Bengani LC,Kobashi H,Ross AE,Zhai H,Salvador-Culla B,Tulsan R,Kolovou PE,Mittal SK,Chauhan SK,Kohane DS,Ciolino JB

    更新日期:2020-10-15 00:00:00

  • Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films.

    abstract::In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.11.002

    authors: Calejo MT,Saari J,Vuorenpää H,Vuorimaa-Laukkanen E,Kallio P,Aalto-Setälä K,Miettinen S,Skottman H,Kellomäki M,Juuti-Uusitalo K

    更新日期:2020-01-01 00:00:00

  • Backside wear, particle migration and effectiveness of screw hole plugs in acetabular hip joint replacement with cross-linked polyethylene.

    abstract::In total hip arthroplasty, osteolysis of the acetabulum often occurs at the backside of cups in the area of screw holes, indicating a clinically relevant amount of polyethylene (PE) wear particles in this area. In order to avoid a possible migration of wear particles to the acetabulum-bone, screw hole plugs are provid...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.07.050

    authors: Braun S,Vardag S,Mueller U,Schroeder S,Sonntag R,Bormann T,Gotterbarm T,Kretzer JP

    更新日期:2019-10-01 00:00:00

  • Ca-Mg-Zn bulk metallic glasses as bioresorbable metals.

    abstract::A series of six unique Ca-based bulk metallic glasses were synthesized and characterized. The glasses were designed to consist solely of the biocompatible elements Ca, Mg and Zn, with the view to their potential use as bioresorbable metals for orthopaedic applications. The alloys had a critical casting thickness of up...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.03.009

    authors: Cao JD,Kirkland NT,Laws KJ,Birbilis N,Ferry M

    更新日期:2012-07-01 00:00:00

  • Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste.

    abstract::We developed a calcium phosphate-based paste containing siRNA against TNF-α and investigated its anti-inflammatory and bone-healing effects in vitro and in vivo in a rat periodontitis model. The bioactive spherical CaP/PEI/siRNA/SiO2 nanoparticles had a core diameter of 40-90 nm and a positive charge (+23 mV) that fac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.01.031

    authors: Tenkumo T,Rojas-Sánchez L,Vanegas Sáenz JR,Ogawa T,Miyashita M,Yoda N,Prymak O,Sokolova V,Sasaki K,Epple M

    更新日期:2020-03-15 00:00:00

  • pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy.

    abstract::We report on new types of chitosan-based nanogels via an ortho ester-based linkage, used as drug carriers for efficient chemotherapy. First, we synthesized a novel diacrylamide containing ortho ester (OEAM) as an acid-labile cross-linker. Subsequently, methacrylated succinyl-chitosan (MASCS) was prepared and polymeriz...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.05.003

    authors: Yang G,Wang X,Fu S,Tang R,Wang J

    更新日期:2017-09-15 00:00:00

  • Evaluation of skeletal tissue repair, part 2: enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model.

    abstract::There is an unmet need for improved, effective tissue engineering strategies to replace or repair bone damaged through disease or injury. Recent research has focused on developing biomaterial scaffolds capable of spatially and temporally releasing combinations of bioactive growth factors, rather than individual molecu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.05.025

    authors: Smith EL,Kanczler JM,Gothard D,Roberts CA,Wells JA,White LJ,Qutachi O,Sawkins MJ,Peto H,Rashidi H,Rojo L,Stevens MM,El Haj AJ,Rose FR,Shakesheff KM,Oreffo RO

    更新日期:2014-10-01 00:00:00

  • Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.

    abstract::Bacterial interference using non-pathogenic Escherichia coli 83972 is a novel strategy for preventing catheter-associated urinary tract infection (CAUTI). Crucial to the success of this strategy is to establish a high coverage and stable biofilm of the non-pathogenic bacteria on the catheter surface. However, this non...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.10.008

    authors: Zhu Z,Yu F,Chen H,Wang J,Lopez AI,Chen Q,Li S,Long Y,Darouiche RO,Hull RA,Zhang L,Cai C

    更新日期:2017-12-01 00:00:00

  • Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.

    abstract::Hydrogels have shown great potential for cartilage tissue engineering applications due to their capability to encapsulate cells within biomimetic, 3-dimensional (3D) microenvironments. However, the multi-step fabrication process that is necessary to produce cell/scaffold constructs with defined dimensions, limits thei...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.11.020

    authors: Brunelle AR,Horner CB,Low K,Ico G,Nam J

    更新日期:2018-01-15 00:00:00

  • Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers.

    abstract::As the potential range of stem cell applications in tissue engineering continues to grow, the appropriate scaffolding choice is necessary to create tightly defined artificial microenvironments for each target organ. These microenvironments determine stem cell fate via control over differentiation. In this study we exa...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.11.022

    authors: Nam J,Johnson J,Lannutti JJ,Agarwal S

    更新日期:2011-04-01 00:00:00

  • Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters.

    abstract::Human pluripotent stem cells (hPSCs) represent a promising cell source for the development of β-cells for use in therapies for type 1 diabetes. Current culture approaches provide signals to mimic a temporal control of organogenesis to drive the differentiation towards β-cells. However, spatial control may represent an...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.06.032

    authors: Youngblood RL,Sampson JP,Lebioda KR,Shea LD

    更新日期:2019-09-15 00:00:00

  • Cell proliferation and migration explain pore bridging dynamics in 3D printed scaffolds of different pore size.

    abstract::Tissue growth in bioscaffolds is influenced significantly by pore geometry, but how this geometric dependence emerges from dynamic cellular processes such as cell proliferation and cell migration remains poorly understood. Here we investigate the influence of pore size on the time required to bridge pores in thin 3D-p...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.07.010

    authors: Buenzli PR,Lanaro M,Wong CS,McLaughlin MP,Allenby MC,Woodruff MA,Simpson MJ

    更新日期:2020-09-15 00:00:00

  • The response of fibrinogen, platelets, endothelial and smooth muscle cells to an electrochemically modified SS316LS surface: towards the enhanced biocompatibility of coronary stents.

    abstract::Modification of a biomedical-grade stainless steel 316LS surface by electrochemical cyclic potentiodynamic passivation (CPP) and the response of fibrinogen (Fg), platelets, endothelial cells (ECs) and smooth muscles cells (SMCs) to this surface was investigated. Polarization modulation infrared reflection absorption s...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.07.007

    authors: Shahryari A,Azari F,Vali H,Omanovic S

    更新日期:2010-02-01 00:00:00

  • Development, fabrication and evaluation of a novel biomimetic human breast tissue derived breast implant surface.

    abstract::Breast implant use has tripled in the last decade with over 320,000 breast implant based reconstructions and augmentations performed in the US per annum. Unfortunately a considerable number of women will experience capsular contracture, the irrepressible and disfiguring, tightening and hardening of the fibrous capsule...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.11.052

    authors: Barr S,Hill EW,Bayat A

    更新日期:2017-02-01 00:00:00

  • Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response.

    abstract::Designing new biomaterials that can modulate the inflammatory response instead of attempting just to reduce it constitutes a paradigm change in regenerative medicine. This work aimed to investigate the capacity of an immunomodulatory biomaterial to enhance bone regeneration. For that purpose we incorporated a molecule...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.04.008

    authors: Santos SG,Lamghari M,Almeida CR,Oliveira MI,Neves N,Ribeiro AC,Barbosa JN,Barros R,Maciel J,Martins MC,Gonçalves RM,Barbosa MA

    更新日期:2013-07-01 00:00:00

  • Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds.

    abstract::This paper reports a new method of cross-linking electrospun zein fibers using citric acid as a non-toxic cross-linker to enhance the water stability and cytocompatibility of zein fibers for tissue engineering and other medical applications. The electrospun structure has many advantages over other types of structures ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.04.024

    authors: Jiang Q,Reddy N,Yang Y

    更新日期:2010-10-01 00:00:00

  • In vivo quantification of hydrogen gas concentration in bone marrow surrounding magnesium fracture fixation hardware using an electrochemical hydrogen gas sensor.

    abstract::Magnesium (Mg) medical devices are currently being marketed for orthopedic applications and have a complex degradation process which includes the evolution of hydrogen gas (H2). The effect of H2 exposure on relevant cell types has not been studied; and the concentration surrounding degrading Mg devices has not been qu...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.04.032

    authors: Zhao D,Brown A,Wang T,Yoshizawa S,Sfeir C,Heineman WR

    更新日期:2018-06-01 00:00:00

  • Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages.

    abstract::Aseptic loosening of total joint replacements is driven by a macrophage-mediated inflammatory reaction to implant-derived wear particles. Phagocytosis of implant debris has been suggested to activate the NLRP3 inflammasome leading to secretion of interleukin (IL)-1β. However, factors and molecular mechanisms driving t...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2020.03.017

    authors: Jämsen E,Pajarinen J,Kouri VP,Rahikkala A,Goodman SB,Manninen M,Nordström DC,Eklund KK,Nurmi K

    更新日期:2020-05-01 00:00:00

  • Polymer chain flexibility-induced differences in fetuin A adsorption and its implications on cell attachment and proliferation.

    abstract:UNLABELLED:Tissue cells are known to respond to the stiffness of the polymer substrate on which they are grown. It has been suggested that material stiffness influences the composition of the protein layer that adsorbs to the material surface, which affects subsequent cell behavior. Previously, the stiffness of a bioma...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.11.039

    authors: Vyner MC,Amsden BG

    更新日期:2016-02-01 00:00:00

  • Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves.

    abstract::The limitations of the current clinical options for valve replacements have inspired the development of enabling technologies to create a tissue engineered heart valve (TEHV). Poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds permit greater biological and biomechanical customization than do non-woven mesh sc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.02.018

    authors: Durst CA,Cuchiara MP,Mansfield EG,West JL,Grande-Allen KJ

    更新日期:2011-06-01 00:00:00

  • Failure mechanisms in fibrous scaffolds.

    abstract::Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fib...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.02.046

    authors: Koh CT,Strange DG,Tonsomboon K,Oyen ML

    更新日期:2013-07-01 00:00:00

  • Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo.

    abstract::Poly(ether ether ketone) (PEEK) and its composites are recognized as alternative bearing materials for use in arthroplasty because of their mechanical properties. The objective of this project was to evaluate the biological response of two different kinds of carbon fiber-reinforced (CFR) PEEK compared with ultra-high ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.06.002

    authors: Utzschneider S,Becker F,Grupp TM,Sievers B,Paulus A,Gottschalk O,Jansson V

    更新日期:2010-11-01 00:00:00

  • Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling.

    abstract::A novel processing route was proposed for the fabrication of biodegradable Mg-Ca binary alloys with high Ca contents (2-3 wt.%) in sheet form with enhanced biocorrosion resistance by tailoring their microstructures. The effective refinement and dispersion of the Mg2Ca phase in the Mg-Ca alloys using extrusion followed...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.09.029

    authors: Seong JW,Kim WJ

    更新日期:2015-01-01 00:00:00

  • Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients.

    abstract::Substrate stiffness is emerging as an effective tool for the regulation of cell behaviours such as locomotion, proliferation and differentiation. In order to explore the potential application of this biophysical tool, material platforms displaying lateral and continuously graded stiffness are advantageous since they a...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.09.030

    authors: Wang PY,Tsai WB,Voelcker NH

    更新日期:2012-02-01 00:00:00