Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies.

Abstract:

:The synthesis of microspheres for tissue regeneration requires good control over the particle size and size distribution. This is particularly important when considering the immune response that may be triggered by the presence of particles in tissue. This report outlines the design of an injectable microsphere system using a low-inflammatory, degradable-polar-hydrophobic-ionic polyurethane, termed D-PHI, and investigates the system's performance in vitro and in vivo. Crosslinked polyurethane microspheres were prepared via a rapid and controlled process based on membrane emulsion and subsequent photopolymerization. The fabrication process efficiently generated microspheres with a narrow size distribution (12 ± 2 μm, PDI = 0.03). The D-PHI microspheres exhibited a slow and controlled degradation and a high capacity for water uptake. Water within the particles existed primarily within the pores of the particles and to a lesser degree within the polymer matrix itself. D-PHI microspheres supported human endothelial and fibroblast cell growth, and they maintained human blood-derived monocytes in a low-inflammatory state. Sub-acute toxicity was assessed for the particles after being administered via intramuscular injection in the gastrocnemius muscle of rats. Cellular infiltration and vascularization into the tissue region where the particles were deposited were observed along with an absence of a fibrous capsule around the particles. The microspheres did not cause elevated human monocyte induced inflammatory character, and supported tissue integration without a prolonged inflammatory response in the rat muscle. These injectable, degradable and low-inflammatory microspheres provide an attractive system for potential drug delivery and tissue regeneration applications in future studies. STATEMENT OF SIGNIFICANCE: Biodegradable, synthetic polymers are attractive candidates for generating tailored drug delivery vehicles and tissue scaffolds owing to their diverse chemical and physical properties that can be customised for delivering defined macromolecules at specific sites in the body. The past two decades have yielded interesting work exploring the fabrication of polymer microspheres with a narrow size distribution. However, the markedly low number of synthetic polymer chemistries currently used for microsphere production exhibit elevated proinflammatory character, both acute and chronic. Furthermore, a limited number of studies have explored the biocompatibility and immune response of polymeric microspheres with human primary cells and in vivo. In the current study, a method was conceived for efficiently generating low-activating polyurethane microspheres with respect to in vitro monocytes and in vivo macrophages. The biodegradable polyurethane, which contained multiple chemistry function and which has previously demonstrated anti-inflammatory properties in film and mm scale scaffold form, was selected as the base material. In this work we undertook the use of a room temperature membrane emulsification photopolymerization approach to avoid the need for high temperature cures and the use of solvents. The response of immune cells to the microspheres was studied with human primary cells and in the rat gastrocnemius muscle. The present work reveals important progress in the design of microspheres, with well-characterized low monocyte-activating properties and the translational advantages of a synthetic polyurethane which could be investigated in future studies for potential macromolecule delivery and tissue regeneration applications.

journal_name

Acta Biomater

journal_title

Acta biomaterialia

authors

Tawagi E,Ganesh T,Cheng HM,Santerre JP

doi

10.1016/j.actbio.2019.03.014

subject

Has Abstract

pub_date

2019-04-15 00:00:00

pages

279-288

eissn

1742-7061

issn

1878-7568

pii

S1742-7061(19)30180-1

journal_volume

89

pub_type

杂志文章
  • Hyaluronan hydrogels delivering BMP-6 for local targeting of malignant plasma cells and osteogenic differentiation of mesenchymal stromal cells.

    abstract::Multiple myeloma is a malignant disease characterized by accumulation of clonal plasma cells in the bone marrow. Uncoupling of bone formation and resorption by myeloma cells leads to osteolytic lesions. These are prone to fracture and represent a possible survival space for myeloma cells under treatment causing diseas...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.07.018

    authors: Grab AL,Seckinger A,Horn P,Hose D,Cavalcanti-Adam EA

    更新日期:2019-09-15 00:00:00

  • Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells.

    abstract::We hypothesized that generating spinal motor neurons (sMNs) from human induced pluripotent stem cell (hiPSC)-derived neural aggregates (NAs) using a chemically-defined differentiation protocol would be more effective inside of 3D fibrin hydrogels compared to 2D poly-L-ornithine(PLO)/laminin-coated tissue culture plast...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.01.040

    authors: Edgar JM,Robinson M,Willerth SM

    更新日期:2017-03-15 00:00:00

  • A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.

    abstract::High porosity and pore interconnectivity are important features of a successful tissue engineering scaffold. The objective of this work was to optimize the pore interconnectivity and to increase the porosity of an elastomeric degradable/polar/hydrophobic/ionic (D-PHI) polyurethane porous scaffold while maintaining its...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.06.018

    authors: Sharifpoor S,Simmons CA,Labow RS,Santerre JP

    更新日期:2010-11-01 00:00:00

  • Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model.

    abstract::Myocardial infarction (MI) leads to the loss of cardiomyocytes, followed by left ventricular (LV) remodeling and cardiac dysfunction. The authors hypothesize that an elastic, biodegradable nanofibrous cardiac patch loaded with mesenchymal stem cells (MSC) could restrain LV remodeling and improve cardiac function after...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.02.030

    authors: Kai D,Wang QL,Wang HJ,Prabhakaran MP,Zhang Y,Tan YZ,Ramakrishna S

    更新日期:2014-06-01 00:00:00

  • Antibacterial biohybrid nanofibers for wound dressings.

    abstract::Globally, chronic wounds impose a notable burden to patients and healthcare systems. Such skin wounds are readily subjected to bacteria that provoke inflammation and hence challenge the healing process. Furthermore, bacteria induce infection impeding re-epithelialization and collagen synthesis. With an estimated globa...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2020.02.022

    authors: Homaeigohar S,Boccaccini AR

    更新日期:2020-04-15 00:00:00

  • Effect of subvoxel processes on non-destructive characterization of β-tricalcium phosphate bone graft substitutes.

    abstract::The geometric features of bone graft substitutes, such as the pore and pore interconnection sizes, are of paramount importance for their biological performance. Such features are generally characterized by micro-computed tomography (μCT). Unfortunately, the resolution of μCT is often too limited. The aim of this study...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2011.07.014

    authors: Bashoor-Zadeh M,Baroud G,Bohner M

    更新日期:2011-11-01 00:00:00

  • Quantum dots in biomedical applications.

    abstract::Semiconducting nanoparticles, more commonly known as quantum dots, possess unique size and shape dependent optoelectronic properties. In recent years, these unique properties have attracted much attention in the biomedical field to enable real-time tissue imaging (bioimaging), diagnostics, single molecule probes, and ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2019.05.022

    authors: Wagner AM,Knipe JM,Orive G,Peppas NA

    更新日期:2019-08-01 00:00:00

  • Transplantation of human amnion prevents recurring adhesions and ameliorates fibrosis in a rat model of sciatic nerve scarring.

    abstract::Peripheral nerve fibrosis and painful adhesions are common, recurring pathological sequelae following injury. In this study, vital human amnion (hAM), an increasingly interesting biomaterial for regenerative medicine, was investigated as a novel therapy. hAM was first analyzed in vitro regarding its anti-adhesive char...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.11.042

    authors: Lemke A,Ferguson J,Gross K,Penzenstadler C,Bradl M,Mayer RL,Gerner C,Redl H,Wolbank S

    更新日期:2018-01-15 00:00:00

  • Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography.

    abstract::The preparation of scaffolds to facilitate the replacement of damaged tissues and organs by means of tissue engineering has been much investigated. The key properties of the biomaterials used to prepare such scaffolds include biodegradability, biocompatibility and a well-defined three-dimensional 3-Dpore network struc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2012.12.004

    authors: Ronca A,Ambrosio L,Grijpma DW

    更新日期:2013-04-01 00:00:00

  • Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.

    abstract::The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2019.03.050

    authors: He Y,Li Q,Ma C,Xie D,Li L,Zhao Y,Shan D,Chomos SK,Dong C,Tierney JW,Sun L,Lu D,Gui L,Yang J

    更新日期:2019-07-15 00:00:00

  • pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    abstract::Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises wheth...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.06.030

    authors: Hild N,Tawakoli PN,Halter JG,Sauer B,Buchalla W,Stark WJ,Mohn D

    更新日期:2013-11-01 00:00:00

  • In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications.

    abstract::Recent studies indicate that there is a great demand to optimize pure Zn with tunable degradation rates and more desirable biocompatibility as orthopedic implants. Metal matrix composite (MMC) can be a promising approach for this purpose. In this study, MMC with pure Zn as a matrix and hydroxyapatite (HA) as reinforce...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.007

    authors: Yang H,Qu X,Lin W,Wang C,Zhu D,Dai K,Zheng Y

    更新日期:2018-04-15 00:00:00

  • Protein adsorption on thin films of carbon and carbon nitride monitored with in situ ellipsometry.

    abstract::Thin films of amorphous carbon and amorphous, graphitic and fullerene-like carbon nitride were deposited by reactive magnetron sputtering and optically characterized with spectroscopic ellipsometry. Complementary studies using scanning electron microscopy and atomic force microscopy were performed. The films were expo...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2010.10.024

    authors: Berlind T,Tengvall P,Hultman L,Arwin H

    更新日期:2011-03-01 00:00:00

  • Nanoengineered injectable hydrogels for wound healing application.

    abstract::We report injectable nanoengineered hemostats for enhanced wound healing and tissue regeneration. The nanoengineered system consists of the natural polysaccharide, κ-carrageenan (κCA), loaded with synthetic two-dimensional (2D) nanosilicates. Nanoengineered hydrogels showed shear-thinning characteristics and can be in...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.01.045

    authors: Lokhande G,Carrow JK,Thakur T,Xavier JR,Parani M,Bayless KJ,Gaharwar AK

    更新日期:2018-04-01 00:00:00

  • Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.

    abstract::The current challenge in peripheral nerve tissue engineering is to produce an implantable scaffold capable of bridging long nerve gaps that will produce results similar to autograft without requiring the harvest of autologous donor tissue. Aligned and random polycaprolactone/gelatin (PCL/gelatin) nanofibrous scaffolds...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.01.039

    authors: Gupta D,Venugopal J,Prabhakaran MP,Dev VR,Low S,Choon AT,Ramakrishna S

    更新日期:2009-09-01 00:00:00

  • Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone.

    abstract:UNLABELLED:Natural amino acids are zwitterionic molecules and the good biocompatibility promises them potential candidates as anti-fouling materials. Here, we developed a new method to functionalize silica nanoparticles with a natural amino acid-based anti-fouling layer. Amino acids were covalently immobilized on 3-ami...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2016.03.035

    authors: Wang H,Cheng F,Shen W,Cheng G,Zhao J,Peng W,Qu J

    更新日期:2016-08-01 00:00:00

  • Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model.

    abstract::The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. However, because of the highly organized nature of the stromal matrix, the attempts to reproduce corneal stroma might follow a scar model. Here, we have develo...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.06.005

    authors: Cui Z,Zeng Q,Liu S,Zhang Y,Zhu D,Guo Y,Xie M,Mathew S,Cai D,Zhang J,Chen J

    更新日期:2018-07-15 00:00:00

  • Absorption performance of iodixanol-imprinted polymers in aqueous and blood plasma media.

    abstract::This paper presents the preparation and absorption performance of iodixanol-imprinted polymers in aqueous and blood plasma media in vitro for biomedical applications. The imprinted polymers were prepared by non-covalent imprinting of iodixanol in a matrix of poly(4-vinylpyridine) crosslinked by ethylene glycol dimetha...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.11.007

    authors: Liu Z,Bucknall DG,Allen MG

    更新日期:2010-06-01 00:00:00

  • Pro-angiogenic near infrared-responsive hydrogels for deliberate transgene expression.

    abstract::CuS nanoparticles (CuSNP) are degradable, readily prepared, inexpensive to produce and efficiently cleared from the body. In this work, we explored the feasibility of CuSNP to function as degradable near infrared (NIR) nanotransducers within fibrin-based cellular scaffolds. To prepare NIR-responsive CuSNP hydrogels, f...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.08.006

    authors: Martín-Saavedra F,Escudero-Duch C,Prieto M,Sánchez-Casanova S,López D,Arruebo M,Voellmy R,Santamaría J,Vilaboa N

    更新日期:2018-09-15 00:00:00

  • Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.

    abstract::Several processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, ...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2018.03.047

    authors: Ribeiro VP,da Silva Morais A,Maia FR,Canadas RF,Costa JB,Oliveira AL,Oliveira JM,Reis RL

    更新日期:2018-05-01 00:00:00

  • Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model.

    abstract::This work investigated the delivery of marrow mesenchymal stem cells (MSCs), with or without the growth factor transforming growth factor-beta1 (TGF-beta1), from biodegradable hydrogel composites on the repair of osteochondral defects in a rabbit model. Three formulations of oligo(poly(ethylene glycol) fumarate) (OPF)...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.07.041

    authors: Guo X,Park H,Young S,Kretlow JD,van den Beucken JJ,Baggett LS,Tabata Y,Kasper FK,Mikos AG,Jansen JA

    更新日期:2010-01-01 00:00:00

  • Myofibroblast persistence with real-time changes in boundary stiffness.

    abstract:UNLABELLED:Myofibroblasts are critical for connective tissue remodeling and wound healing since they can close wound beds and shape tissues rapidly by generating high traction forces and secreting abundant extracellular matrix proteins and matrix metalloproteinases. However, their presence in excessive numbers is assoc...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2015.12.031

    authors: Kural MH,Billiar KL

    更新日期:2016-03-01 00:00:00

  • A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys.

    abstract::The development of polyelectrolyte multilayered coatings on magnesium alloy substrates that can be used for controlled delivery of growth factors and required biomolecules from the surface of these degradable implants could have a significant impact in the field of bone tissue regeneration. The current work reports on...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.05.013

    authors: Kunjukunju S,Roy A,Ramanathan M,Lee B,Candiello JE,Kumta PN

    更新日期:2013-11-01 00:00:00

  • The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.

    abstract::Bioactive ions released from bioceramics play important roles in bone regeneration; however, it is unclear how each ionic composition in complex bioceramics exerts its specific effect on bone regeneration. The aim of this study is to elucidate the functional effects of Sr and Si ions in bioceramics on the regeneration...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2017.08.015

    authors: Mao L,Xia L,Chang J,Liu J,Jiang L,Wu C,Fang B

    更新日期:2017-10-01 00:00:00

  • From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites.

    abstract::Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad ap...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章,评审

    doi:10.1016/j.actbio.2020.12.030

    authors: Clasky AJ,Watchorn JD,Chen PZ,Gu FX

    更新日期:2020-12-19 00:00:00

  • Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering.

    abstract::Corneal disease is a major cause of blindness and keratoplasty is an effective treatment method. However, clinical treatment is limited due to a severe shortage of high-quality allogeneic corneal tissues and the bacterial infection after corneal transplantation. In this study, we develop a novel artificial and antibac...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2013.08.033

    authors: Liu Y,Ren L,Long K,Wang L,Wang Y

    更新日期:2014-01-01 00:00:00

  • Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    abstract::The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurem...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2006.06.003

    authors: Tang YC,Katsuma S,Fujimoto S,Hiromoto S

    更新日期:2006-11-01 00:00:00

  • Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells.

    abstract::Biomolecular signals within the native extracellular matrix are complex, with bioactive factors found in both soluble and sequestered states. In the design of biomaterials for tissue engineering applications it is increasingly clear that new approaches are required to locally tailor the biomolecular environment surrou...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2014.07.002

    authors: Alsop AT,Pence JC,Weisgerber DW,Harley BAC,Bailey RC

    更新日期:2014-11-01 00:00:00

  • Protein-imprinted polysiloxane scaffolds.

    abstract::Molecular imprinting is a technique used to create specific recognition sites on the surface of materials. Although widely developed for chromatographic separation of small molecules, this approach has not been adequately investigated for biomaterial applications. Thus, the objective of these experiments was to explor...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2007.01.003

    authors: Lee K,Itharaju RR,Puleo DA

    更新日期:2007-07-01 00:00:00

  • Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process.

    abstract::Puerarin nanoparticles were firstly prepared in the process of solution-enhanced dispersion by supercritical CO(2) (SEDS) and then successfully microencapsulated by poly(l-lactide) (PLLA) in a modified SEDS process. By adding an organic non-solvent, an initial puerarin solution with a higher degree of saturation and l...

    journal_title:Acta biomaterialia

    pub_type: 杂志文章

    doi:10.1016/j.actbio.2009.04.032

    authors: Chen AZ,Li Y,Chau FT,Lau TY,Hu JY,Zhao Z,Mok DK

    更新日期:2009-10-01 00:00:00