Role of phosphodiesterases in the regulation of gonadotropin- releasing hormone secretion in GT1 cells.

Abstract:

:Increases in the level of cAMP stimulate the secretion of GnRH from GT1 GnRH neuronal cells. We hypothesized that cyclic nucleotide phosphodiesterases (PDEs), the enzymes that hydrolyze cAMP, may constitute a negative feedback signaling mechanism for GnRH regulation by decreasing the level of cAMP. GT1 cells were shown to express three PDEs by RT-PCR analysis: the cAMP-specific PDE4B and PDE4D and the calmodulin-dependent PDE1B. A splice variant of PDE4D, PDE4D3, which is activated when phosphorylated by cAMP-dependent protein kinase (PKA), was identified in GT1 cells by Western analysis. Consistent with PDEs negatively regulating GnRH secretion, treatment with the nonselective PDE inhibitor, IBMX, stimulated GnRH secretion 137% in 30-min static cultures. Furthermore, treatment with the PDE4-specific inhibitors Rolipram and RS-25344 increased GnRH secretion 48 and 125%, while treatment with the PDE1-specific inhibitor 8-MeoM-IBMX only caused a modest increase of 28%. In perifusion studies a rapid multi-fold stimulation of GnRH secretion was observed following treatment with IBMX, Rolipram or RS-25344. In conclusion, the level of PDE activity appears to be an important negative feedback signal for GnRH secretion. We hypothesize that activation of PDE4D3 by PKA may constitute a negative feedback signaling pathway which participates in the regulation of cAMP levels.

journal_name

Neuroendocrinology

journal_title

Neuroendocrinology

authors

Sakakibara H,Conti M,Weiner RI

doi

10.1159/000054386

subject

Has Abstract

pub_date

1998-12-01 00:00:00

pages

365-73

issue

6

eissn

0028-3835

issn

1423-0194

pii

nen68365

journal_volume

68

pub_type

杂志文章