A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions.

Abstract:

:Transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), control the redox and metabolic homeostasis and oxidative stress. Inhibitors of Keap1-Nrf2 interaction are promising in oxidative stress related inflammatory diseases but now hit hurdles. By utilizing thiazolidinone moiety to shield the key carboxyl pharmacophore in Keap1-Nrf2 inhibitor, a hydrogen peroxide (H2O2)-responsive prodrug pro2 was developed. The prodrug modification improved the physicochemical properties and cell membrane permeability of the parent drug. Pro2 was stable and stayed inactive under various physiological conditions, while became active by stimulation of H2O2 or inflammation derived reactive oxygen species. Moreover, pro2 exhibited proper pharmacokinetic profile suitable for oral administration and enhanced anti-inflammatory efficiency in vivo. Thus, this novel prodrug approach may not only provide an important advance in the therapy of chronic inflammatory diseases with high level of H2O2, but also offer a fresh solution to improve the drug-like and selectivity issues of Keap1-Nrf2 inhibitors.

journal_name

Redox Biol

journal_title

Redox biology

authors

Lu M,Zhang X,Zhao J,You Q,Jiang Z

doi

10.1016/j.redox.2020.101565

subject

Has Abstract

pub_date

2020-07-01 00:00:00

pages

101565

issn

2213-2317

pii

S2213-2317(20)30494-8

journal_volume

34

pub_type

杂志文章
  • Impact of inhibition of the autophagy-lysosomal pathway on biomolecules carbonylation and proteome regulation in rat cardiac cells.

    abstract::Cells employ multiple defence mechanisms to sustain a wide range of stress conditions associated with accumulation of modified self-biomolecules leading to lipo- and proteotoxicity. One of such mechanisms involves activation of the autophagy-lysosomal pathway for removal and degradation of modified lipids, proteins an...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101123

    authors: Coliva G,Duarte S,Pérez-Sala D,Fedorova M

    更新日期:2019-05-01 00:00:00

  • Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease.

    abstract::Exposure to (bi)sulfite (HSO3-) and sulfite (SO32-) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3-), peroxymonosulfate (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.014

    authors: Kumar A,Triquigneaux M,Madenspacher J,Ranguelova K,Bang JJ,Fessler MB,Mason RP

    更新日期:2018-05-01 00:00:00

  • Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors.

    abstract::Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101201

    authors: Brown EE,DeWeerd AJ,Ildefonso CJ,Lewin AS,Ash JD

    更新日期:2019-06-01 00:00:00

  • Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy.

    abstract::Chronic alcoholism disrupts mitochondrial function and often results in alcoholic cardiomyopathy (ACM). Fas-activated serine/threonine kinase (FASTK) is newly recognized as a key post-transcriptional regulator of mitochondrial gene expression. However, the modulatory role of FASTK in cardiovascular pathophysiology rem...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101778

    authors: Zhang F,Wang K,Zhang S,Li J,Fan R,Chen X,Pei J

    更新日期:2021-01-01 00:00:00

  • Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences.

    abstract::Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the rec...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.015

    authors: Richter K,Konzack A,Pihlajaniemi T,Heljasvaara R,Kietzmann T

    更新日期:2015-12-01 00:00:00

  • Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins.

    abstract::Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or bindin...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101822

    authors: Jiang S,Carroll L,Rasmussen LM,Davies MJ

    更新日期:2021-01-01 00:00:00

  • A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation.

    abstract::Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-ath...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101644

    authors: Liao S,Wu J,Liu R,Wang S,Luo J,Yang Y,Qin Y,Li T,Zheng X,Song J,Zhao X,Xiao C,Zhang Y,Bian L,Jia P,Bai Y,Zheng X

    更新日期:2020-09-01 00:00:00

  • Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity.

    abstract::The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enz...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.12.015

    authors: Omotayo TI,Akinyemi GS,Omololu PA,Ajayi BO,Akindahunsi AA,Rocha JB,Kade IJ

    更新日期:2015-01-01 00:00:00

  • Formation of 2-nitrophenol from salicylaldehyde as a suitable test for low peroxynitrite fluxes.

    abstract::There has been some dispute regarding reaction products formed at physiological peroxynitrite fluxes in the nanomolar range with phenolic molecules, when used to predict the behavior of protein-bound aromatic amino acids like tyrosine. Previous data showed that at nanomolar fluxes of peroxynitrite, nitration of these ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.008

    authors: Mikhed Y,Bruns K,Schildknecht S,Jörg M,Dib M,Oelze M,Lackner KJ,Münzel T,Ullrich V,Daiber A

    更新日期:2016-04-01 00:00:00

  • Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome.

    abstract::We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are u...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101592

    authors: Aggarwal S,Lazrak A,Ahmad I,Yu Z,Bryant A,Mobley JA,Ford DA,Matalon S

    更新日期:2020-09-01 00:00:00

  • Hydroxytyrosol supplementation increases vitamin C levels in vivo. A human volunteer trial.

    abstract::Hydroxytyrosol (HT) is a main phenolic component of olive oil. In this study, we investigated the safety and effects produced by HT purified (99.5%) from olive mill waste. HT was administered at a daily dosage of 45mg for 8 weeks to volunteers with mild hyperlipidemia (n=14). We measured markers of cardiovascular dise...

    journal_title:Redox biology

    pub_type: 临床试验,杂志文章

    doi:10.1016/j.redox.2016.12.014

    authors: Lopez-Huertas E,Fonolla J

    更新日期:2017-04-01 00:00:00

  • Azidothymidine-triphosphate impairs mitochondrial dynamics by disrupting the quality control system.

    abstract::Highly active anti-retrovirus therapy (HAART) has been used to block the progression and symptoms of human immunodeficiency virus infection. Although it decreases morbidity and mortality, clinical use of HAART has also been linked to various adverse effects such as severe cardiomyopathy resulting from compromised mito...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.06.011

    authors: Nomura R,Sato T,Sato Y,Medin JA,Kushimoto S,Yanagisawa T

    更新日期:2017-10-01 00:00:00

  • Lactate as a fulcrum of metabolism.

    abstract::Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and c...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2020.101454

    authors: Brooks GA

    更新日期:2020-08-01 00:00:00

  • Brain adaptation to hypoxia and hyperoxia in mice.

    abstract:AIMS:Hyperoxic breathing might lead to redox imbalance and signaling changes that affect cerebral function. Paradoxically, hypoxic breathing is also believed to cause oxidative stress. Our aim is to dissect the cerebral tissue responses to altered O2 fractions in breathed air by assessing the redox imbalance and the re...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.10.018

    authors: Terraneo L,Paroni R,Bianciardi P,Giallongo T,Carelli S,Gorio A,Samaja M

    更新日期:2017-04-01 00:00:00

  • Redox regulation of proteasome function.

    abstract::Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) were initially regarded mainly as metabolic by-products with damaging properties. Over the last decade, our understanding of their role in metabolism was drastically changed and they were recognized as essential mediators in cellular signaling cascades,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.07.005

    authors: Lefaki M,Papaevgeniou N,Chondrogianni N

    更新日期:2017-10-01 00:00:00

  • Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity.

    abstract::The inducible form of Heme Oxygenase-1 (HO-1), a major endoplasmic reticulum (ER) associated heme protein, is known to play important roles in protection against oxidative and chemical stress by degrading free heme released from degradation of heme proteins. In this study we show that induced expression of HO-1 by sub...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.07.004

    authors: Bansal S,Biswas G,Avadhani NG

    更新日期:2013-07-23 00:00:00

  • Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging.

    abstract::Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in c...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.07.005

    authors: Hill S,Van Remmen H

    更新日期:2014-07-27 00:00:00

  • Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall.

    abstract::Epidemiological studies have shown that estrogens have protective effects in cardiovascular diseases, even though the results from human clinical trials remain controversial, while most of the animal experiments confirmed this effect, but the detailed mechanism remains unclear. In this study, we found that estradiol (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.11.001

    authors: Liu Z,Gou Y,Zhang H,Zuo H,Zhang H,Liu Z,Yao D

    更新日期:2014-01-01 00:00:00

  • Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

    abstract::Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral a...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.04.040

    authors: Matsui R,Watanabe Y,Murdoch CE

    更新日期:2017-08-01 00:00:00

  • Elastin aging and lipid oxidation products in human aorta.

    abstract::Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.12.008

    authors: Zarkovic K,Larroque-Cardoso P,Pucelle M,Salvayre R,Waeg G,Nègre-Salvayre A,Zarkovic N

    更新日期:2015-01-01 00:00:00

  • Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic.

    abstract::Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold highe...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101790

    authors: Shariev A,Menounos S,Laos AJ,Laxman P,Lai D,Hua S,Zinger A,McRae CR,Casbolt LS,Combes V,Smith G,Hung TT,Dixon KM,Thordarson P,Mason RS,Das A

    更新日期:2021-01-01 00:00:00

  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells.

    abstract::Hypoxia, a common element in the tumor environment, leads to Hypoxia-Inducible Factor-1α (HIF-1α) stabilization to modulate cellular metabolism as an adaptive response. In a previous study, we showed that inhibition of the nuclear factor erythroid 2-like-2 (NFE2L2; NRF2), a master regulator of many genes coping with e...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101210

    authors: Lee S,Hallis SP,Jung KA,Ryu D,Kwak MK

    更新日期:2019-06-01 00:00:00

  • Renoprotective effect of the antioxidant curcumin: Recent findings.

    abstract::For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China,...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2013.09.003

    authors: Trujillo J,Chirino YI,Molina-Jijón E,Andérica-Romero AC,Tapia E,Pedraza-Chaverrí J

    更新日期:2013-09-17 00:00:00

  • Artesunate-induced mitophagy alters cellular redox status.

    abstract::Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.025

    authors: Zhang J,Sun X,Wang L,Wong YK,Lee YM,Zhou C,Wu G,Zhao T,Yang L,Lu L,Zhong J,Huang D,Wang J

    更新日期:2018-10-01 00:00:00

  • Hydrogen sulfide stimulates xanthine oxidoreductase conversion to nitrite reductase and formation of NO.

    abstract::Cardiovascular disease is the leading cause of death and disability worldwide with increased oxidative stress and reduced NO bioavailability serving as key risk factors. For decades, elevation in protein abundance and enzymatic activity of xanthine oxidoreductase (XOR) under hypoxic/inflammatory conditions has been as...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101447

    authors: Pardue S,Kolluru GK,Shen X,Lewis SE,Saffle CB,Kelley EE,Kevil CG

    更新日期:2020-07-01 00:00:00

  • Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster.

    abstract::In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the convers...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101654

    authors: Zatsepina O,Karpov D,Chuvakova L,Rezvykh A,Funikov S,Sorokina S,Zakluta A,Garbuz D,Shilova V,Evgen'ev M

    更新日期:2020-09-01 00:00:00

  • Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress.

    abstract::Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101195

    authors: Liu H,Wang L,Weng X,Chen H,Du Y,Diao C,Chen Z,Liu X

    更新日期:2019-06-01 00:00:00

  • Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy.

    abstract::Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been fou...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2014.04.006

    authors: Eshaq RS,Wright WS,Harris NR

    更新日期:2014-04-18 00:00:00

  • Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones.

    abstract::NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturatio...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101656

    authors: Sweeny EA,Schlanger S,Stuehr DJ

    更新日期:2020-09-01 00:00:00