Lactate as a fulcrum of metabolism.

Abstract:

:Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and consumer (recipient) cells lactate fulfills at least three purposes: 1] a major energy source for mitochondrial respiration; 2] the major gluconeogenic precursor; and 3] a signaling molecule. Working by mass action, cell redox regulation, allosteric binding, and reprogramming of chromatin by lactylation of lysine residues on histones, lactate has major influences in energy substrate partitioning. The physiological range of tissue [lactate] is 0.5-20 mM and the cellular Lactate/Pyruvate ratio (L/P) can range from 10 to >500; these changes during exercise and other stress-strain responses dwarf other metabolic signals in magnitude and span. Hence, lactate dynamics have rapid and major short- and long-term effects on cell redox and other control systems. By inhibiting lipolysis in adipose via HCAR-1, and muscle mitochondrial fatty acid uptake via malonyl-CoA and CPT1, lactate controls energy substrate partitioning. Repeated lactate exposure from regular exercise results in major effects on the expression of regulatory enzymes of glycolysis and mitochondrial respiration. Lactate is the fulcrum of metabolic regulation in vivo.

journal_name

Redox Biol

journal_title

Redox biology

authors

Brooks GA

doi

10.1016/j.redox.2020.101454

subject

Has Abstract

pub_date

2020-08-01 00:00:00

pages

101454

issn

2213-2317

pii

S2213-2317(20)30042-2

journal_volume

35

pub_type

杂志文章,评审
  • Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells.

    abstract:BACKGROUND:Vitamin D status [25(OH)D] has recently been reported to be associated with altered cellular bioenergetic profiles of peripheral blood mononuclear cells (PBMCs). No study has tracked the seasonal variation of 25(OH)D and its putative influence on whole body energy metabolism, cellular bioenergetic profiles, ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.04.009

    authors: Calton EK,Keane KN,Raizel R,Rowlands J,Soares MJ,Newsholme P

    更新日期:2017-08-01 00:00:00

  • Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences.

    abstract::Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the rec...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2015.08.015

    authors: Richter K,Konzack A,Pihlajaniemi T,Heljasvaara R,Kietzmann T

    更新日期:2015-12-01 00:00:00

  • Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion.

    abstract::Ischemia heart disease is the leading cause of death world-widely and has increased prevalence and exacerbated myocardial infarction with aging. Sestrin2, a stress-inducible protein, declines with aging in the heart and the rescue of Sestrin2 in the aged mouse heart improves the resistance to ischemic insults caused b...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101556

    authors: Ren D,Quan N,Fedorova J,Zhang J,He Z,Li J

    更新日期:2020-07-01 00:00:00

  • Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease.

    abstract::Exposure to (bi)sulfite (HSO3-) and sulfite (SO32-) has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bi)sulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3-), peroxymonosulfate (...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.12.014

    authors: Kumar A,Triquigneaux M,Madenspacher J,Ranguelova K,Bang JJ,Fessler MB,Mason RP

    更新日期:2018-05-01 00:00:00

  • Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells.

    abstract::Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.11.019

    authors: Chen X,Chen X,Zhang X,Wang L,Cao P,Rajamanickam V,Wu C,Zhou H,Cai Y,Liang G,Wang Y

    更新日期:2019-02-01 00:00:00

  • Critical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase.

    abstract::Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADM...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2017.02.022

    authors: Liu Z,Liu Y,Xu Q,Peng H,Tang Y,Yang T,Yu Z,Cheng G,Zhang G,Shi R

    更新日期:2017-08-01 00:00:00

  • Redox signaling during hypoxia in mammalian cells.

    abstract::Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting ...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2017.05.020

    authors: Smith KA,Waypa GB,Schumacker PT

    更新日期:2017-10-01 00:00:00

  • Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.

    abstract::Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabol...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2016.10.001

    authors: Du K,Ramachandran A,Jaeschke H

    更新日期:2016-12-01 00:00:00

  • Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo.

    abstract::Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescen...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101235

    authors: Rastogi A,Clark CW,Conlin SM,Brown SE,Timme-Laragy AR

    更新日期:2019-09-01 00:00:00

  • Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.

    abstract::Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (p...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101549

    authors: Penjweini R,Roarke B,Alspaugh G,Gevorgyan A,Andreoni A,Pasut A,Sackett DL,Knutson JR

    更新日期:2020-07-01 00:00:00

  • Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action.

    abstract::Matcha and green tea catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques ...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101731

    authors: Olson KR,Briggs A,Devireddy M,Iovino NA,Skora NC,Whelan J,Villa BP,Yuan X,Mannam V,Howard S,Gao Y,Minnion M,Feelisch M

    更新日期:2020-10-01 00:00:00

  • L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    abstract::Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidati...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.11.003

    authors: Frikke-Schmidt H,Tveden-Nyborg P,Lykkesfeldt J

    更新日期:2016-04-01 00:00:00

  • TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression.

    abstract::Mitochondrial derived reactive oxygen species (mtROS) are known for their signaling qualities in both physiology and pathology. To elucidate mitochondrial complex I-dependent ROS-signaling after lipopolysaccharide (LPS)-stimulation THP-1 macrophages with a knockdown of the transmembrane protein TMEM126B were generated...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.10.007

    authors: Fuhrmann DC,Wittig I,Brüne B

    更新日期:2019-01-01 00:00:00

  • Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics.

    abstract::Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101129

    authors: Chamberlain N,Korwin-Mihavics BR,Nakada EM,Bruno SR,Heppner DE,Chapman DG,Hoffman SM,van der Vliet A,Suratt BT,Dienz O,Alcorn JF,Anathy V

    更新日期:2019-04-01 00:00:00

  • A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations.

    abstract::NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations th...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.07.026

    authors: Levings DC,Wang X,Kohlhase D,Bell DA,Slattery M

    更新日期:2018-10-01 00:00:00

  • Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    abstract::Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as co...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2013.10.006

    authors: Salanova M,Schiffl G,Gutsmann M,Felsenberg D,Furlan S,Volpe P,Clarke A,Blottner D

    更新日期:2013-10-28 00:00:00

  • Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer.

    abstract::Mechanistic/mammalian target of rapamycin (mTOR) has emerged as a new potential therapeutic target for gastric cancer. Rapamycin and rapamycin analogs are undergoing clinical trials and have produced clinical responses in a subgroup of cancer patients. However, monotherapy with rapamycin at safe dosage fails to induce...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.09.006

    authors: Chen W,Zou P,Zhao Z,Chen X,Fan X,Vinothkumar R,Cui R,Wu F,Zhang Q,Liang G,Ji J

    更新日期:2016-12-01 00:00:00

  • Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress.

    abstract::Ischemia/reperfusion injury (I/R) is one of the leading causes of acute kidney injury (AKI) that typically occurs in renal surgeries. However, renal I/R still currently lacks effective therapeutic targets. In this study, we proved that inhibition of Brd4 with its selective inhibitor, JQ1, could exert a protective role...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101195

    authors: Liu H,Wang L,Weng X,Chen H,Du Y,Diao C,Chen Z,Liu X

    更新日期:2019-06-01 00:00:00

  • Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    abstract::Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2015.05.001

    authors: Treberg JR,Munro D,Banh S,Zacharias P,Sotiri E

    更新日期:2015-08-01 00:00:00

  • Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation.

    abstract::Injury-induced stenosis is a serious vascular complication. We previously reported that p38α (MAPK14), a redox-regulated p38MAPK family member was a negative regulator of the VSMC contractile phenotype in vitro. Here we evaluated the function of VSMC-MAPK14 in vivo in injury-induced neointima hyperplasia and the under...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101137

    authors: Wu W,Zhang W,Choi M,Zhao J,Gao P,Xue M,Singer HA,Jourd'heuil D,Long X

    更新日期:2019-04-01 00:00:00

  • Triggering apoptosis by oroxylin A through caspase-8 activation and p62/SQSTM1 proteolysis.

    abstract::Emerging evidence suggests that oroxylin A exhibits antitumor effects by inducing cell apoptosis. However, the involved molecular mechanisms have not been elucidated. Here we report that the apoptosis induced by oroxylin A was dependent on p62-mediated activation of caspase-8 in hepatocellular carcinoma cells. Further...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101392

    authors: Zhao Y,Zhu Q,Bu X,Zhou Y,Bai D,Guo Q,Gao Y,Lu N

    更新日期:2020-01-01 00:00:00

  • Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.

    abstract::Yeast Sir2 is an NAD-dependent histone deacetylase related to oxidative stress and aging. In a previous study, we showed that Sir2 is regulated by S-glutathionylation of key cysteine residues located at the catalytic domain. Mutation of these residues results in strains with increased resistance to disulfide stress. I...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101229

    authors: Vall-Llaura N,Mir N,Garrido L,Vived C,Cabiscol E

    更新日期:2019-06-01 00:00:00

  • SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum.

    abstract::Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research fo...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2018.03.018

    authors: Liu R,Cao P,Ren A,Wang S,Yang T,Zhu T,Shi L,Zhu J,Jiang AL,Zhao MW

    更新日期:2018-06-01 00:00:00

  • HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress.

    abstract::The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-r...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101843

    authors: Thangaraj A,Chivero ET,Tripathi A,Singh S,Niu F,Guo ML,Pillai P,Periyasamy P,Buch S

    更新日期:2020-12-23 00:00:00

  • Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation.

    abstract::Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101325

    authors: Böhmer A,Barz S,Schwab K,Kolbe U,Gabel A,Kirkpatrick J,Ohlenschläger O,Görlach M,Böhmer FD

    更新日期:2020-01-01 00:00:00

  • Redoxins as gatekeepers of the transcriptional oxidative stress response.

    abstract::Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-...

    journal_title:Redox biology

    pub_type: 杂志文章,评审

    doi:10.1016/j.redox.2019.101104

    authors: Hopkins BL,Neumann CA

    更新日期:2019-02-01 00:00:00

  • Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms.

    abstract::Glutathione peroxidase 2 (GPx2) is one of the five selenoprotein GPxs having a selenocysteine in the active center. GPx2 is strongly expressed in the gastrointestinal epithelium, as is another isoform, GPx1, though with a different localization pattern. Both GPxs are redox-active enzymes that are important for the red...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2019.101388

    authors: Koeberle SC,Gollowitzer A,Laoukili J,Kranenburg O,Werz O,Koeberle A,Kipp AP

    更新日期:2020-01-01 00:00:00

  • Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy.

    abstract::Chronic alcoholism disrupts mitochondrial function and often results in alcoholic cardiomyopathy (ACM). Fas-activated serine/threonine kinase (FASTK) is newly recognized as a key post-transcriptional regulator of mitochondrial gene expression. However, the modulatory role of FASTK in cardiovascular pathophysiology rem...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2020.101778

    authors: Zhang F,Wang K,Zhang S,Li J,Fan R,Chen X,Pei J

    更新日期:2021-01-01 00:00:00

  • Mechanisms by which heme oxygenase rescue renal dysfunction in obesity.

    abstract::Obesity and excessive inflammation/oxidative stress are pathophysiological forces associated with kidney dysfunction. Although we recently showed that heme-oxygenase (HO) improves renal functions, the mechanisms are largely unclear. Moreover, the effects of the HO-system on podocyte cytoskeletal proteins like podocin,...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2014.09.001

    authors: Ndisang JF,Tiwari S

    更新日期:2014-01-01 00:00:00

  • Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts.

    abstract::Mice deficient in the electron transport chain (ETC) complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPR(MT)) and increased mitochondrial number. We hypothesized that the u...

    journal_title:Redox biology

    pub_type: 杂志文章

    doi:10.1016/j.redox.2016.05.001

    authors: Pharaoh G,Pulliam D,Hill S,Sataranatarajan K,Van Remmen H

    更新日期:2016-08-01 00:00:00