Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model.

Abstract:

:In a study of spine injuries in Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) from 2001-09, spinal fractures sustained by mounted soldiers accounted for 26% of all injuries, and of that, 43% were caused by explosions [1]. The thoracolumbar region is the most vulnerable area of the spine [2], and injuries are often incapacitating, making egress from vehicles difficult. Injury prediction from such events continues to remain a challenge due to the limited availability of studies specifically focused on underbody blasts (UBB) and criteria on related injuries. This study focuses on developing and validating the spine response of an updated 50th percentile male Global Human Body Models Consortium (GHBMC) Finite Element (FE) model using instrumented post-mortem human subject (PMHS) laboratory tests under two unique conditions. The model was validated against response corridors created using scaled thoracic (T12, T8, T5, T1) and sacrum (S1) spine Z-axis accelerations obtained from WSU whole-body PMHS tests. The scores for the updated spine model ranged from 0.557 - 0.756 for condition 1 (Seat- 4 m/s in 10 ms; Floor- 6 m/s in 5 ms) and 0.639-0.849 for condition 2 (Seat- 4 m/s in 55 ms; Floor- 8 m/s in 2 ms). The PMHS tests sustained spinal injuries in the thoracolumbar region. The validated model indicates high stress and strain concentrations at the same locations, providing an explanation for the fractures sustained in the PMHS tests.

authors

Somasundaram K,Zhang L,Sherman D,Begeman P,Lyu D,Cavanaugh JM

doi

10.1016/j.jmbbm.2019.103398

subject

Has Abstract

pub_date

2019-12-01 00:00:00

pages

103398

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(19)30376-5

journal_volume

100

pub_type

杂志文章
  • Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

    abstract::In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relax...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.09.023

    authors: Seyfi B,Fatouraee N,Imeni M

    更新日期:2018-01-01 00:00:00

  • Fracture origins in twenty-two dental alumina crowns.

    abstract:OBJECTIVES:The causes of in vivo fractures of all-ceramic dental crowns are not yet fully understood. The fracture origins often occur in the cervical margin in the approximal area, but the reason for this is unclear. The aim of this study was to evaluate the fracture origin of 22 of clinically-failed alumina crowns. ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.08.006

    authors: Øilo M,Quinn GD

    更新日期:2016-01-01 00:00:00

  • An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets.

    abstract::The atrioventricular heart valve (AHV) leaflets are critical to the facilitation of proper unidirectional blood flow through the heart. Previously, studies have been conducted to understand the tissue mechanics of healthy AHV leaflets to inform the development of valve-specific computational models and replacement mat...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103438

    authors: Duginski GA,Ross CJ,Laurence DW,Johns CH,Lee CH

    更新日期:2020-01-01 00:00:00

  • Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair.

    abstract::Meniscal injury is typically treated surgically via partial meniscectomy, which has been shown to cause cartilage degeneration in the long-term. Consequently, research has focused on meniscal prevention and replacement. However, none of the materials or implants developed for meniscal replacement have yet achieved wid...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.041

    authors: Warnecke D,Stein S,Haffner-Luntzer M,de Roy L,Skaer N,Walker R,Kessler O,Ignatius A,Dürselen L

    更新日期:2018-10-01 00:00:00

  • Damage mechanisms in uniaxial compression of single enamel rods.

    abstract::Enamel possesses a complex hierarchical structure, which bestows this tissue with unique mechanical properties. In this study, the mechanical behavior of single enamel rods was investigated under uniaxial compression. Numerical simulations were also performed using micromechanics models for individual enamel rods to i...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.10.014

    authors: An B,Wang R,Arola D,Zhang D

    更新日期:2015-02-01 00:00:00

  • Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    abstract::Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 1...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.03.019

    authors: Swift NB,Hsiung BK,Kennedy EB,Tan KT

    更新日期:2016-08-01 00:00:00

  • Quantifying tactile properties of liver tissue, silicone elastomers, and a 3D printed polymer for manufacturing realistic organ models.

    abstract::In order to produce anatomical models that feel realistic to the touch, artificial materials need to be found that mimic tactile properties of biological tissues. The aim of this study was to provide a guideline for identifying materials that feel similar to biological tissues, based on a quantifiable and reproducible...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103630

    authors: Estermann SJ,Pahr DH,Reisinger A

    更新日期:2020-04-01 00:00:00

  • Administration of PTH and ibandronate increases ovariectomized rat compact bone viscoelasticity.

    abstract::In this study, the bone mineral density (BMD), geometry, macroscopic viscoelastic properties and mechanical strength in five different groups of Sprague-Dawley rats (sham operated, ovariectomized with vehicle, parathyroid hormone and/or ibandronate administration) were examined by peripheral quantitative computed tomo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.03.009

    authors: Yang X,Teoh SH,DasDe S,Lee T

    更新日期:2013-06-01 00:00:00

  • A novel assessment of microstructural and mechanical behaviour of bilayer silica-reinforced nanocomposite hydrogels as a candidate for artificial cartilage.

    abstract::The complex structure of healthy articular cartilage facilitates the joint withstanding the imposed pressures and retaining interstitial fluid to lessen stresses on its soft tissue, while easing the locomotion and minimising friction between cartilage mates. Avascular nature of this tissue results in unrecoverable dam...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2021.104333

    authors: Mostakhdemin M,Nand A,Ramezani M

    更新日期:2021-01-18 00:00:00

  • Mechanical, bactericidal and osteogenic behaviours of hydrothermally synthesised TiO2 nanowire arrays.

    abstract::The application of orthopaedic implants is associated with risks of bacterial infection and long-term antibiotic therapy. This problem has led to the study of implants with nano-textured surfaces as a method of inhibiting bacterial adhesion and reducing implant failure due to infection. In this research, various nano-...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.02.011

    authors: Jaggessar A,Mathew A,Wang H,Tesfamichael T,Yan C,Yarlagadda PK

    更新日期:2018-04-01 00:00:00

  • Finite Element simulation of buckling-induced vein tortuosity and influence of the wall constitutive properties.

    abstract::The mechanisms giving rise to vein tortuosity, which is often associated with varicosis, are poorly understood. Recent works suggest that significant biological changes in the wall of varicose veins may precede the mechanical aspects of the disease. To test the hypothesis of tortuosity being a consequence of these cha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.05.006

    authors: Badel P,Rohan CP,Avril S

    更新日期:2013-10-01 00:00:00

  • Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering.

    abstract::A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects whic...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.03.032

    authors: Weisgerber DW,Erning K,Flanagan CL,Hollister SJ,Harley BAC

    更新日期:2016-08-01 00:00:00

  • Fracture resistance of CAD/CAM occlusal veneers: A systematic review of laboratory studies.

    abstract:OBJECTIVE:The purpose of this systematic review was to summarize scientific evidence that evaluates in vitro fracture and fatigue strength of occlusal veneers in different thicknesses, CAD/CAM materials, and under different aging methodologies. MATERIALS AND METHODS:An electronic search of 3 English databases (The Nat...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2020.103948

    authors: Albelasy EH,Hamama HH,Tsoi JKH,Mahmoud SH

    更新日期:2020-10-01 00:00:00

  • The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    abstract::The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired pr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.014

    authors: Szewciw L,Zhu D,Barthelat F

    更新日期:2017-12-01 00:00:00

  • A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery.

    abstract::Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was sug...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.017

    authors: Ariza-Gracia MÁ,Ortillés Á,Cristóbal JÁ,Rodríguez Matas JF,Calvo B

    更新日期:2017-10-01 00:00:00

  • Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries.

    abstract::The study concerns the determination of mechanical properties of human coronary arterial walls with both experimental and constitutive modeling approaches. The research material was harvested from 18 patients (range 50-84 years). On the basis of hospital records and visual observation, each tissue sample was classifie...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.021

    authors: Jankowska MA,Bartkowiak-Jowsa M,Bedzinski R

    更新日期:2015-10-01 00:00:00

  • Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers.

    abstract::In this study, Acid Soluble Collagen-g-P(methyl methacrylate-co-ethyl acrylate) (CME) was synthesized to take advantage of the flexibility of the resulted branched polymer chains and the high density of their chain entanglement. The coaxial electrospinning technique was applied to study the effect of electrically and ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.002

    authors: Bazrafshan Z,Stylios GK

    更新日期:2018-11-01 00:00:00

  • Relationships between the morphology, swelling and mechanical properties of poly(dimethyl siloxane)/poly(acrylic acid) interpenetrating networks.

    abstract::A limitation in the use of hydrophilic polymers as implantable devices is their inherently poor mechanical strength. Using interpenetrating polymer networks (IPNs) consisting of both hydrophilic and hydrophobic networks is an effective method of strengthening these polymers. In this work, a series of poly(dimethyl sil...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.01.002

    authors: Jalili K,Abbasi F,Oskoee SS,Alinejad Z

    更新日期:2009-10-01 00:00:00

  • Two-piece zirconia oral implants withstand masticatory loads: An investigation in the artificial mouth.

    abstract:OBJECTIVE:To evaluate the fracture resistance of two-piece zirconia oral implants after long-term thermomechanical cycling in an aqueous environment. Non-loaded samples and a one-piece implant system served as control groups. METHODS:A total of 48 zirconia implants were evaluated: 16 one-piece implants (ATZ; Group A) ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.07.005

    authors: Spies BC,Nold J,Vach K,Kohal RJ

    更新日期:2016-01-01 00:00:00

  • Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement.

    abstract::Infection incidence for total hip and knee arthroplasty (THA and TKA, respectively) is between 0.2% and 5% and results in approximately 100,000 device failures per year in the United States. Treatment requires prolonged systemic antibiotic therapy with additional surgical revisions. As a prophylactic measure against i...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.033

    authors: Bishop AR,Kim S,Squire MW,Rose WE,Ploeg HL

    更新日期:2018-11-01 00:00:00

  • Clinical versus pre-clinical FE models for vertebral body strength predictions.

    abstract::The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clini...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.11.018

    authors: Pahr DH,Schwiedrzik J,Dall'Ara E,Zysset PK

    更新日期:2014-05-01 00:00:00

  • Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.

    abstract::A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water co...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.03.001

    authors: Tonsomboon K,Oyen ML

    更新日期:2013-05-01 00:00:00

  • Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users.

    abstract::Pressure ulcers (PUs) are common in patients who chronically depend on a wheelchair for mobility, such as those with a spinal cord injury (SCI). In attempt to prevent the formation of PUs, pressure relieving maneuvers, such as push-ups, are commonly recommended for individuals with SCI. However, very little is known a...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.04.015

    authors: Levy A,Kopplin K,Gefen A

    更新日期:2013-12-01 00:00:00

  • A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.

    abstract::The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Int...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103849

    authors: Baldwin SJ,Sampson J,Peacock CJ,Martin ML,Veres SP,Lee JM,Kreplak L

    更新日期:2020-10-01 00:00:00

  • Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.

    abstract::Bio-engineered scaffolds for bone tissue regeneration is an exploding area of research mainly because they can satisfy the essential demands and current challenges in bone replacement therapies, by imitating the extracellular matrix (ECM) of the native bone. We fabricated bio-composite nanofibrous scaffolds with a ble...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.06.032

    authors: Zhang S,Prabhakaran MP,Qin X,Ramakrishna S

    更新日期:2015-11-01 00:00:00

  • Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations.

    abstract::Continuous fibre distribution models can be applied to a variety of biological tissues with both charged and neutral extracellular matrices. In particular, ellipsoidal models have been used to describe the complex material behaviour of tissues such as articular cartilage and their engineered tissue equivalents. The ch...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.01.006

    authors: Nagel T,Kelly DJ

    更新日期:2012-05-01 00:00:00

  • Combination of a biodegradable three-dimensional (3D) - printed cage for mechanical support and nanofibrous membranes for sustainable release of antimicrobial agents for treating the femoral metaphyseal comminuted fracture.

    abstract::The aim of this study was to develop a biodegradable three-dimensional-printed polylactide (PLA) cage for promoting bony fixation and an antibiotics-embedded poly(d,l)-lactide-co-glycolide (PLGA) nanofibrous membrane for infectious prophylaxis during treating the comminuted metaphyseal fracture in a rabbit femoral mod...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.05.002

    authors: Chou YC,Lee D,Chang TM,Hsu YH,Yu YH,Chan EC,Liu SJ

    更新日期:2017-08-01 00:00:00

  • Interfacial bonding between mineral platelets in bone and its effect on mechanical properties of bone.

    abstract::Bone is a composite material consisting principally of apatite mineral, collagen fibrils, non-collagenous proteins, and other organic species. Recent electron microscopy studies have shown that the mineral in bone occurs as stacks of thin polycrystalline sheets ("mineral lamellae," MLs) which surround and lie between ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104132

    authors: Pang S,Schwarcz HP,Jasiuk I

    更新日期:2021-01-01 00:00:00

  • Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.

    abstract::A newly designed hydroxyapatite-polyurethane (HA-PU) composite scaffold was prepared by polymerizing glyceride of castor oil (GCO) with isophorone diisocyanate (IPDI) and HA as fillers. The aim of this study was to determine the effect of HA fillers on the mechanical properties and osteogenesis capacity of the composi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.08.028

    authors: Du J,Zuo Y,Lin L,Huang D,Niu L,Wei Y,Wang K,Lin Q,Zou Q,Li Y

    更新日期:2018-12-01 00:00:00

  • A novel prime-&-rinse mode using MDP and MMPs inhibitors improves the dentin bond durability of self-etch adhesive.

    abstract:OBJECTIVES:The study investigated the effects of novel prime-&-rinse mode using MDP (10-methacryloyloxydecyl dihydrogenphosphate) and matrix metalloproteinase (MMPs) inhibitors on dentin microtensile bond strengths (MTBS) of self-etch adhesive, resin-dentin interface degradations, and activity of recombinant human (rh)...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103698

    authors: Xu J,Li M,Wang W,Wu Z,Wang C,Jin X,Zhang L,Jiang W,Fu B

    更新日期:2020-04-01 00:00:00