A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery.

Abstract:

:Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was suggested to be an ill-posed problem. Thus, we propose a numerical-experimental protocol that uses inflation and indentation experiments simultaneously, restricting the optimization space to circumvent the ambiguity of the fitting. For the first time, both corneal behaviors, i.e., biaxial tension (physiological) and bending (non-physiological), are taken into account. The experimental protocol was performed using an animal model (New Zealand rabbit's cornea). The patient-specific geometry and IOP were registered using a MODI topographer (CSO, Italy) and an applanation tonometer, respectively. The mechanical response was evaluated using inflation and indentation experiments. Subsequently, the optimal set of material properties is identified via an inverse finite element method. To validate the methodology, an in vivo incisional refractive surgery (astigmatic keratotomy, AK) is performed on four animals. The optical outcomes showed a good agreement between the real and simulated surgeries, indicating that the protocol can provide a reliable set of mechanical properties that enables further applications and simulations. After a reliable ex vivo database of inflation experiments is built, our protocol could be extended to humans.

authors

Ariza-Gracia MÁ,Ortillés Á,Cristóbal JÁ,Rodríguez Matas JF,Calvo B

doi

10.1016/j.jmbbm.2017.06.017

subject

Has Abstract

pub_date

2017-10-01 00:00:00

pages

304-314

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(17)30256-4

journal_volume

74

pub_type

杂志文章
  • Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp.

    abstract::Brazil nut (Bertholletia excelsa) fruits are capable of resisting high mechanical forces when released from trees as tall as 50 m, as well as during animal dispersal by sharp-teethed rodents. Thick mesocarp plays a crucial part in seed protection. We investigated the role of microstructure and how sclereids, fibers, a...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104306

    authors: Sonego M,Madia M,Eder M,Fleck C,Pessan LA

    更新日期:2021-01-07 00:00:00

  • Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.

    abstract::A newly designed hydroxyapatite-polyurethane (HA-PU) composite scaffold was prepared by polymerizing glyceride of castor oil (GCO) with isophorone diisocyanate (IPDI) and HA as fillers. The aim of this study was to determine the effect of HA fillers on the mechanical properties and osteogenesis capacity of the composi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.08.028

    authors: Du J,Zuo Y,Lin L,Huang D,Niu L,Wei Y,Wang K,Lin Q,Zou Q,Li Y

    更新日期:2018-12-01 00:00:00

  • Mechanical properties and adaptations of some less familiar bony tissues.

    abstract::This review attempts to show the bone community that there are many ways of being a 'bone', and that the range of mechanical properties of bone material is much greater than is conventionally thought to be the case. However the structure-function relationships have in many cases hardly moved beyond mere assertion. The...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章,评审

    doi:10.1016/j.jmbbm.2010.03.002

    authors: Currey JD

    更新日期:2010-07-01 00:00:00

  • Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance.

    abstract::The incorporation of functional monomers and proteolytic inhibitors into adhesive systems have shown to be promising strategies to improve the longevity of adhesive restorations. The aim of this study was to evaluate the long-term bonding performance and anti-gelatinolytic effect of a 10-MDP-based universal adhesive s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103925

    authors: Giacomini MC,Scaffa PMC,Gonçalves RS,Zabeu GS,Vidal CMP,Carrilho MRO,Honório HM,Wang L

    更新日期:2020-10-01 00:00:00

  • Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic.

    abstract::Considering the interest of the research community in the fatigue behavior of all-ceramic restorations and the time consumed in low-frequency cyclic fatigue tests, this study aimed to investigate the influence of the loading frequency on the zirconia fatigue strength. The biaxial flexural fatigue strength of Y-TZP dis...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.01.008

    authors: Fraga S,Pereira GKR,Freitas M,Kleverlaan CJ,Valandro LF,May LG

    更新日期:2016-08-01 00:00:00

  • Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    abstract::The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by mea...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.05.019

    authors: Bolzoni L,Esteban PG,Ruiz-Navas EM,Gordo E

    更新日期:2012-11-01 00:00:00

  • Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    abstract::Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.012

    authors: Slaboch CL,Alber MS,Rosen ED,Ovaert TC

    更新日期:2012-06-01 00:00:00

  • Performance analysis of grafted poly (2-methacryloyloxyethyl phosphorylcholine) on additively manufactured titanium substrate for hip implant applications.

    abstract::The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity beha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103412

    authors: Ghosh S,Abanteriba S,Wong S,Houshyar S

    更新日期:2019-12-01 00:00:00

  • Deterioration of the mechanical properties of calcium phosphate cements with Poly (γ-glutamic acid) and its strontium salt after in vitro degradation.

    abstract::The mechanical reliability of calcium phosphate cements has restricted their clinical application in load-bearing locations. Although their mechanical strength can be improved using a variety of strategies, their fatigue properties are still unclear, especially after degradation. The evolutions of uniaxial compressive...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.026

    authors: Liang T,Gao CX,Yang L,Saijilafu,Yang HL,Luo ZP

    更新日期:2017-11-01 00:00:00

  • A novel prime-&-rinse mode using MDP and MMPs inhibitors improves the dentin bond durability of self-etch adhesive.

    abstract:OBJECTIVES:The study investigated the effects of novel prime-&-rinse mode using MDP (10-methacryloyloxydecyl dihydrogenphosphate) and matrix metalloproteinase (MMPs) inhibitors on dentin microtensile bond strengths (MTBS) of self-etch adhesive, resin-dentin interface degradations, and activity of recombinant human (rh)...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103698

    authors: Xu J,Li M,Wang W,Wu Z,Wang C,Jin X,Zhang L,Jiang W,Fu B

    更新日期:2020-04-01 00:00:00

  • Mechanical response of porcine hind leg muscles under dynamic tensile loading.

    abstract::A modified split Hopkinson tension bar (SHTB) apparatus was used to investigate the dynamic tensile mechanical response of porcine muscles. A hollow aluminum alloy transmission bar and a semiconductor strain gauge were used to enhance the weak signal from porcine muscles. A ring-shaped copper pulse shaper was used to ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104279

    authors: Wen Y,Zhang T,Yan W,Chen Y,Wang G

    更新日期:2021-03-01 00:00:00

  • Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    abstract::This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.02.029

    authors: Askari E,Mehrali M,Metselaar IH,Kadri NA,Rahman MM

    更新日期:2012-08-01 00:00:00

  • Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis.

    abstract::This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.09.013

    authors: Cifuentes SC,Frutos E,Benavente R,Lorenzo V,González-Carrasco JL

    更新日期:2017-01-01 00:00:00

  • Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties.

    abstract::Tissue engineering technology requires porous scaffolds, based on biomaterials, which have to mimic as closely as possible the morphological and anisotropic mechanical properties of the native tissue to substitute. Anisotropic fibrous scaffolds fabricated by template-assisted electrospinning are investigated in this s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104124

    authors: Mondésert H,Bossard F,Favier D

    更新日期:2021-01-01 00:00:00

  • Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep.

    abstract::The aim of this work was to assess the influence of reduction of the apparent mechanical properties of fully load-bearing porous titanium implants used in mandibular bone defects. Segmental 18mm long bone defects were created bilaterally in the lower jaws of adult ewes. One group of 6 ewes (group A) was treated with l...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.02.036

    authors: Schouman T,Schmitt M,Adam C,Dubois G,Rouch P

    更新日期:2016-06-01 00:00:00

  • Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.

    abstract::Processing scaffolds that mimic the extracellular matrix (ECM) of natural bone in structure and chemical composition is a potential promising option for engineering physiologically functional bone tissue. In this article, we report a novel method, by combining electrospinning and mineralization, to process a series of...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.01.007

    authors: Liao S,Murugan R,Chan CK,Ramakrishna S

    更新日期:2008-07-01 00:00:00

  • Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    abstract::This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composit...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.12.013

    authors: Bagheri ZS,El Sawi I,Schemitsch EH,Zdero R,Bougherara H

    更新日期:2013-04-01 00:00:00

  • Interfacial indentations in biological composites.

    abstract::Biocomposites comprise highly stiff reinforcement elements connected by a compliant matrix material. While the interfacial elastic properties of these biocomposites play a key role in determining the mechanical properties of the entire biocomposite, these properties cannot be measured directly from standard nanomechan...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104209

    authors: Shelef Y,Bar-On B

    更新日期:2021-02-01 00:00:00

  • Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating.

    abstract::This study investigated the biocompatibility of the experimental thermoplastic rubber Arbomatrix(™) that will be used as the protective coating on a novel intracranial pressure (ICP) sensor silicon chip. Arbomatrix(™) was benchmarked against biocompatible commercial silicone rubber shunt tubing in the brain via a rat ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.01.018

    authors: Yang J,Charif AC,Puskas JE,Phillips H,Shanahan KJ,Garsed J,Fleischman A,Goldman K,Roy S,Luebbers MT,Dombrowski SM,Luciano MG

    更新日期:2015-05-01 00:00:00

  • Effect of solvent/disinfectant ethanol on the micro-surface structure and properties of multiphase denture base polymers.

    abstract:AIM OF THE STUDY:The aim of this study was to evaluate the effect of solvent/disinfectant ethanol on the surface of denture base polymers. Changes in surface roughness, topography and some nanomechanical properties were assessed by SEM and nanoindentation plotted against different concentrations of ethanol on heat cure...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.007

    authors: Basavarajappa S,Al-Kheraif AA,ElSharawy M,Vallittu PK

    更新日期:2016-02-01 00:00:00

  • Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase.

    abstract::The microstructure and mechanical properties of as-extruded Mg-8Y-1Er-2Zn (wt%) alloy containing long period stacking ordered (LPSO) phase are comparatively investigated before and after corrosion in a simulated body fluid (SBF) at 37°C. The as-extruded alloy consists of a long strip-like 18R-LPSO phase and some fine ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.012

    authors: Leng Z,Zhang J,Yin T,Zhang L,Guo X,Peng Q,Zhang M,Wu R

    更新日期:2013-12-01 00:00:00

  • Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces.

    abstract::The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.08.019

    authors: Claeson AA,Barocas VH

    更新日期:2017-01-01 00:00:00

  • Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element.

    abstract::Porous scaffolds of Ti-6Al-4V were produced by mixing of this alloy with different amount of magnesium (Mg) powders. The mixtures were compacted in steel die by applying uniaxial pressure of 500 MPa before sintering the compacts in sealed quartz tubes at 900 °C for 2 h. Employing Archimedes׳ principle and Image Tool s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.04.015

    authors: Kalantari SM,Arabi H,Mirdamadi S,Mirsalehi SA

    更新日期:2015-08-01 00:00:00

  • Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces.

    abstract::Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollag...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.04.002

    authors: Lai ZB,Wang M,Yan C,Oloyede A

    更新日期:2014-08-01 00:00:00

  • Transient behavior and relaxation of microcapsules with a cross-linked human serum albumin membrane.

    abstract::Capsules consist of droplets enclosed by a membrane with shear resistant properties especially when fabricated by interfacial cross-linking. In many applications, the protection and release of the internal medium need to be strictly controlled. It is possible to tune the membrane mechanical properties by changing the ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.008

    authors: Gires PY,Barthès-Biesel D,Leclerc E,Salsac AV

    更新日期:2016-05-01 00:00:00

  • Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco).

    abstract::Mechanical characterization of the cortex of rectrices (tail feathers) of the Toco Toucan (Ramphastos toco) has been carried out by tensile testing of the rachis cortex in order to systematically determine Young's modulus and maximum tensile strength gradients on the surfaces and along the length of the feather. Of ov...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.01.010

    authors: Bodde SG,Meyers MA,McKittrick J

    更新日期:2011-07-01 00:00:00

  • Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.

    abstract::The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils ∼100nm diameter. We track the fibrillar deformation of antler tissue d...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.03.020

    authors: Gupta HS,Krauss S,Kerschnitzki M,Karunaratne A,Dunlop JW,Barber AH,Boesecke P,Funari SS,Fratzl P

    更新日期:2013-12-01 00:00:00

  • Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion.

    abstract::Severe plastic deformation (SPD) has recently been advanced as the main process for fabricating bulk ultrafine grained or nanocrystalline metallic materials, which present much higher strength and better bio-compatibility than coarse-grained counterparts. Medical devices, such as aneurysm clips and dental implants, re...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.02.002

    authors: Um HY,Park BH,Ahn DH,Abd El Aal MI,Park J,Kim HS

    更新日期:2017-04-01 00:00:00

  • Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    abstract::Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.12.001

    authors: Balla VK,Soderlind J,Bose S,Bandyopadhyay A

    更新日期:2014-04-01 00:00:00

  • Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.

    abstract::Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion r...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.03.026

    authors: de Obaldia EE,Jeong C,Grunenfelder LK,Kisailus D,Zavattieri P

    更新日期:2015-08-01 00:00:00