Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.

Abstract:

:The inelastic deformability of the mineralised matrix in bones is critical to their high toughness, but the nanoscale mechanisms are incompletely understood. Antler is a tough bone type, with a nanostructure composed of mineralised collagen fibrils ∼100nm diameter. We track the fibrillar deformation of antler tissue during cyclic loading using in situ synchrotron small-angle X-ray diffraction (SAXD), finding that residual strain remains in the fibrils after the load was removed. During repeated unloading/reloading cycles, the fibril strain shows minimal hysteresis when plotted as a function of tissue strain, indicating that permanent plastic strain accumulates inside the fibril. We model the tensile response of the mineralised collagen fibril by a two - level staggered model - including both elastic - and inelastic regimes - with debonding between mineral and collagen within fibrils triggering macroscopic inelasticity. In the model, the subsequent frictional sliding at intrafibrillar mineral/collagen interfaces accounts for subsequent inelastic deformation of the tissue in tension. The model is compared to experimental measurements of fibrillar and mineral platelet strain during tensile deformation, measured by in situ synchrotron SAXD and wide-angle X-ray diffraction (WAXD) respectively, as well as macroscopic tissue stress and strain. By fitting the model predictions to experimentally observed parameters like the yield point, elastic modulus and post-yield slope, extremely good agreement is found between the model and experimental data at both the macro- and at the nanoscale. Our results provide strong evidence that intrafibrillar sliding between mineral and collagen leads to permanent plastic strain at both the fibril and the tissue level, and that the energy thus dissipated is a significant factor behind the high toughness of antler bone.

authors

Gupta HS,Krauss S,Kerschnitzki M,Karunaratne A,Dunlop JW,Barber AH,Boesecke P,Funari SS,Fratzl P

doi

10.1016/j.jmbbm.2013.03.020

subject

Has Abstract

pub_date

2013-12-01 00:00:00

pages

366-82

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(13)00109-4

journal_volume

28

pub_type

杂志文章
  • Development of novel zirconia implant's materials gradated design with improved bioactive surface.

    abstract::Zirconia implants are becoming a preference choice for different applications such as knee, dental, among others. In order to improve osseointegration, implant's surfaces are usually coated with bioactive materials like hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) that are very similar to the calcium pho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.022

    authors: Faria D,Pires JM,Boccaccini AR,Carvalho O,Silva FS,Mesquita-Guimarães J

    更新日期:2019-06-01 00:00:00

  • Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance.

    abstract::The incorporation of functional monomers and proteolytic inhibitors into adhesive systems have shown to be promising strategies to improve the longevity of adhesive restorations. The aim of this study was to evaluate the long-term bonding performance and anti-gelatinolytic effect of a 10-MDP-based universal adhesive s...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103925

    authors: Giacomini MC,Scaffa PMC,Gonçalves RS,Zabeu GS,Vidal CMP,Carrilho MRO,Honório HM,Wang L

    更新日期:2020-10-01 00:00:00

  • Articular cartilage surface rupture during compression: investigating the effects of tissue hydration in relation to matrix health.

    abstract::This study aimed at investigating articular cartilage rupture by investigating the response of healthy and degenerate cartilage through altering the osmotic swelling environment of surface-intact, cartilage-on-bone specimens. The osmotic environment in healthy and degenerate bovine cartilage was varied by soaking tiss...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.04.018

    authors: Fick JM,Espino DM

    更新日期:2011-10-01 00:00:00

  • Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    abstract::Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedsto...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.11.002

    authors: Yugeswaran S,Yoganand CP,Kobayashi A,Paraskevopoulos KM,Subramanian B

    更新日期:2012-05-01 00:00:00

  • Understanding hydration effects on mechanical and impacting properties of turtle shell.

    abstract::Study of the properties of natural biomaterials provides a reliable experimental basis for the design of biomimetic materials. The mechanical properties and impact wear behaviors of turtle shell with different soaking time were investigated on a micro-amplitude impact wear tester. The damage behavior of turtle shells ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.007

    authors: Zhang X,Cai ZB,Li W,Zhu MH

    更新日期:2018-02-01 00:00:00

  • The effect of ethanol on surface of semi-interpenetrating polymer network (IPN) polymer matrix of glass-fibre reinforced composite.

    abstract:AIM OF THE STUDY:The aim of this laboratory study was to evaluate the effect of ethanol treatment on the surface roughness (Sa), nano-mechanical properties (NMP) and surface characterization of dental fiber reinforced composite (FRC) with semi-interpenetrating polymer network (IPN). MATERIALS AND METHODS:A total of 24...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.030

    authors: Basavarajappa S,Perea-Lowery L,Aati S,Abdullah Al-Kheraif AA,Ramakrishnaiah R,Matinlinna JP,Vallittu PK

    更新日期:2019-10-01 00:00:00

  • Mechanical evaluation by patient-specific finite element analyses demonstrates therapeutic effects for osteoporotic vertebrae.

    abstract::Osteoporosis can lead to bone compressive fractures in the lower lumbar vertebrae. In order to assess the recovery of vertebral strength during drug treatment for osteoporosis, it is necessary not only to measure the bone mass but also to perform patient-specific mechanical analyses, since the strength of osteoporotic...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2009.03.001

    authors: Tawara D,Sakamoto J,Murakami H,Kawahara N,Oda J,Tomita K

    更新日期:2010-01-01 00:00:00

  • Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence.

    abstract::Anterior cervical discectomy with fusion is a common surgical treatment that can relieve patients suffering from cervical spondylosis. This surgery is most commonly performed with the use of a cervical cage. One serious complication of the fusion cages commercially available in the market is subsidence of the cage wit...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.05.040

    authors: Moussa A,Tanzer M,Pasini D

    更新日期:2018-09-01 00:00:00

  • Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique.

    abstract::The adhesion of bovine chondrocytes and human osteoblasts to three titania-based coatings, formed by plasma electrolytic oxidation (PEO), was compared to that on uncoated Ti-6Al-4V substrates, and some comparisons were also made with plasma sprayed hydroxyapatite (HA) coatings. This was done using a centrifuge, with a...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2011.07.009

    authors: Robinson HJ,Markaki AE,Collier CA,Clyne TW

    更新日期:2011-11-01 00:00:00

  • Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair.

    abstract::Meniscal injury is typically treated surgically via partial meniscectomy, which has been shown to cause cartilage degeneration in the long-term. Consequently, research has focused on meniscal prevention and replacement. However, none of the materials or implants developed for meniscal replacement have yet achieved wid...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.041

    authors: Warnecke D,Stein S,Haffner-Luntzer M,de Roy L,Skaer N,Walker R,Kessler O,Ignatius A,Dürselen L

    更新日期:2018-10-01 00:00:00

  • Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering.

    abstract::A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects whic...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.03.032

    authors: Weisgerber DW,Erning K,Flanagan CL,Hollister SJ,Harley BAC

    更新日期:2016-08-01 00:00:00

  • Damage mechanisms in uniaxial compression of single enamel rods.

    abstract::Enamel possesses a complex hierarchical structure, which bestows this tissue with unique mechanical properties. In this study, the mechanical behavior of single enamel rods was investigated under uniaxial compression. Numerical simulations were also performed using micromechanics models for individual enamel rods to i...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.10.014

    authors: An B,Wang R,Arola D,Zhang D

    更新日期:2015-02-01 00:00:00

  • "Force-from-lipids" gating of mechanosensitive channels modulated by PUFAs.

    abstract::The level of fatty acid saturation in phospholipids is a crucial determinant of the biophysical properties of the lipid bilayer. Integral membrane proteins are sensitive to changes of their bilayer environment such that their activities and localization can be profoundly affected. When incorporated into phospholipids ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.12.026

    authors: Ridone P,Grage SL,Patkunarajah A,Battle AR,Ulrich AS,Martinac B

    更新日期:2018-03-01 00:00:00

  • A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue.

    abstract::This work presents a novel microstructurally-based, multi-scale model describing the passive behaviour of skeletal muscle tissue. The model is based on the detailed description of the mechanically relevant parts of the microstructure. The effective constitutive material response is obtained by a homogenisation of mech...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.012

    authors: Bleiler C,Ponte Castañeda P,Röhrle O

    更新日期:2019-09-01 00:00:00

  • Heterogeneous modeling based prosthesis design with porosity and material variation.

    abstract::The work proposes the development of heterogeneous bio-implants with the aim to minimize stress shielding effect and enhance bone ingrowth. Stress shielding in the implant can be minimized by reducing the overall stiffness of the implant, which is achieved here by varying the material based on stress distribution acro...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.07.029

    authors: Singh SK,Tandon P

    更新日期:2018-11-01 00:00:00

  • Biomechanics of stomach tissues and structure in patients with obesity.

    abstract::Even though bariatric surgery is one of the most effective treatment option of obesity, post-surgical weight loss is not always ensured, especially in the long term, when many patients experience weight regain. Bariatric procedures are largely based on surgeon's expertise and intra-operative decisions, while an integr...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103883

    authors: Carniel EL,Albanese A,Fontanella CG,Pavan PG,Prevedello L,Salmaso C,Todros S,Toniolo I,Foletto M

    更新日期:2020-10-01 00:00:00

  • Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.

    abstract::In this paper we hypothesize that the layer-separated residual stresses and mechanical properties of layer-separated thoracic aorta arteries may be dependent on arterial location of the vessel. To demonstrate any possible position differences, we measured the axial pre-stretch and opening angle and performed uniaxial ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.05.024

    authors: Peña JA,Martínez MA,Peña E

    更新日期:2015-10-01 00:00:00

  • Periprosthetic wear particle migration and distribution modelling and the implication for osteolysis in cementless total hip replacement.

    abstract::In total hip replacement (THR), wear particles play a significant role in osteolysis and have been observed in locations as remote as the tip of femoral stem. However, there is no clear understanding of the factors and mechanisms causing, or contributing to particle migration to the periprosthetic tissue. Interfacial ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.01.005

    authors: Alidousti H,Taylor M,Bressloff NW

    更新日期:2014-04-01 00:00:00

  • Myoglobin and troponin concentrations are increased in early stage deep tissue injury.

    abstract::Pressure-induced deep tissue injury is a form of pressure ulcer which is difficult to detect and diagnose at an early stage, before the wound has severely progressed and becomes visible at the skin surface. At the present time, no such detection technique is available. To test the hypothesis that muscle damage biomark...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.12.026

    authors: Traa WA,Strijkers GJ,Bader DL,Oomens CWJ

    更新日期:2019-04-01 00:00:00

  • Detection of degradation in polyester implants by analysing mode shapes of structure vibration.

    abstract::This paper presents a numerical study on using vibration analysis to detect degradation in degrading polyesters. A numerical model of a degrading plate sample is considered. The plate is assumed to degrade following the typical behaviour of amorphous copolymers of polylactide and polyglycolide. Due to the well-known a...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.05.002

    authors: Samami H,Pan J

    更新日期:2016-09-01 00:00:00

  • Performance analysis of grafted poly (2-methacryloyloxyethyl phosphorylcholine) on additively manufactured titanium substrate for hip implant applications.

    abstract::The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity beha...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103412

    authors: Ghosh S,Abanteriba S,Wong S,Houshyar S

    更新日期:2019-12-01 00:00:00

  • Environmental fatigue of superelastic NiTi wire with two surface finishes.

    abstract::Surface finish of NiTi is widely perceived to affect its biocompatibility and corrosion fatigue performance. The aim of this work was to find out, whether a carefully engineered surface oxide shows any beneficial effect over electropolished surface on the fatigue performance of superelastic NiTi wire mechanically cycl...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104028

    authors: Racek J,Šittner P

    更新日期:2020-11-01 00:00:00

  • Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate.

    abstract::The surface of commercially pure Ti (cp-Ti) substrate was grit-blasted with Al(2)O(3) powders and then wet-blasted with HAp/Ti mixed powders at room temperature. Then plasma spraying with Ti powders or HAp/Ti mixed powders on the blasted surface was carried out to form a bond coat layer, denoted as T50 and T100 bond c...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2008.11.001

    authors: Rakngarm A,Mutoh Y

    更新日期:2009-10-01 00:00:00

  • A multiparametric evaluation of post-restored teeth with simulated bone loss.

    abstract::Endodontically-treated teeth are prone to fracture due to loss of tooth structure and altered mechanical behaviors. The stability and rigidity of post-restored teeth, particularly in cases involving periodontal destruction, has not been adequately investigated. This study examined the influence of post material on tee...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.10.012

    authors: Ni CW,Chang CH,Chen TY,Chuang SF

    更新日期:2011-04-01 00:00:00

  • Fibroblast populated collagen lattices exhibit opposite biophysical conditions by fibrin or hyaluronic acid supplementation.

    abstract::Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fi...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.03.042

    authors: Chopin-Doroteo M,Salgado-Curiel RM,Pérez-González J,Marín-Santibáñez BM,Krötzsch E

    更新日期:2018-06-01 00:00:00

  • The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells.

    abstract::Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentia...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.04.016

    authors: Virjula S,Zhao F,Leivo J,Vanhatupa S,Kreutzer J,Vaughan TJ,Honkala AM,Viehrig M,Mullen CA,Kallio P,McNamara LM,Miettinen S

    更新日期:2017-08-01 00:00:00

  • Adhesion of ligand-conjugated biosynthesized magnetite nanoparticles to triple negative breast cancer cells.

    abstract::This paper presents the results of an experimental study of the adhesion forces between components of model conjugated magnetite nanoparticle systems for improved selectivity in the specific targeting of triple negative breast cancer. Adhesion forces between chemically synthesized magnetite nanoparticles (CMNPs), bios...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.02.004

    authors: Obayemi JD,Hu J,Uzonwanne VO,Odusanya OS,Malatesta K,Anuku N,Soboyejo WO

    更新日期:2017-04-01 00:00:00

  • Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces.

    abstract::The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.08.019

    authors: Claeson AA,Barocas VH

    更新日期:2017-01-01 00:00:00

  • Study on the effect of graphene oxide (GO) feeding on silk properties based on segmented precise measurement.

    abstract::Silk is widely used in the biomedical field (e.g., surgical sutures) for its excellent mechanical properties and biocompatibility. The properties of silk can be further enhanced by a multitude of methods, including nano particle feeding, which is convenient and green. Generally, the filament length of a silkworm cocoo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104147

    authors: Qu J,Dai M,Ye W,Fang Y,Bian D,Su W,Li F,Sun H,Wei J,Li B

    更新日期:2021-01-01 00:00:00

  • Human enamel rod presents anisotropic nanotribological properties.

    abstract::The AFM combined nanoindentation was performed to observe the ultrastructure of enamel rod from various section plans and positions while probing their mechanical and tribological properties of the area. The nanohardness and the elastic modulus of the head region of the enamel rods are significantly higher than that o...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2010.12.002

    authors: Jeng YR,Lin TT,Hsu HM,Chang HJ,Shieh DB

    更新日期:2011-05-01 00:00:00