Myoglobin and troponin concentrations are increased in early stage deep tissue injury.

Abstract:

:Pressure-induced deep tissue injury is a form of pressure ulcer which is difficult to detect and diagnose at an early stage, before the wound has severely progressed and becomes visible at the skin surface. At the present time, no such detection technique is available. To test the hypothesis that muscle damage biomarkers can be indicative of the development of deep tissue injury after sustained mechanical loading, an indentation test was performed for 2 h on the tibialis anterior muscle of rats. Myoglobin and troponin were analysed in blood plasma and urine over a period of 5 days. The damage as detected by the biomarkers was compared to damage as observed with T2 MRI to validate the response. We found that myoglobin and troponin levels in blood increased due to the damage. Myoglobin was also increased in urine. The amount of damage observed with MRI immediately after loading had a strong correlation with the maximal biomarker levels: troponin in blood rs = 0.94; myoglobin in blood rs = 0.75; and myoglobin in urine rs = 0.57. This study suggests that muscle damage markers measured in blood and urine could serve as early diagnosis for pressure induced deep tissue injury.

authors

Traa WA,Strijkers GJ,Bader DL,Oomens CWJ

doi

10.1016/j.jmbbm.2018.12.026

subject

Has Abstract

pub_date

2019-04-01 00:00:00

pages

50-57

eissn

1751-6161

issn

1878-0180

pii

S1751-6161(18)31435-8

journal_volume

92

pub_type

杂志文章
  • Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds.

    abstract::The purpose of this study is to construct bone tissue engineering scaffold with high porosity, good mechanical properties, and biological activities. Bioactive glass/gelatin composite scaffolds with different amounts of tetrapod zinc oxide whiskers were produced. The morphology, mechanical properties and in vitro bioa...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.01.032

    authors: Guo W,Zhao F,Wang Y,Tang J,Chen X

    更新日期:2017-04-01 00:00:00

  • How does lubricant viscosity affect the wear behaviour of VitE-XLPE articulated against CoCr?

    abstract::Using a 50-station pin-on-disc (SuperCTPOD) machine, the influence of lubricant viscosity on the wear of vitamin E blended crosslinked polyethylene was investigated. Five different test lubricants were prepared by mixing different concentrations of carboxymethyl cellulose powder with deionised water. The viscosity ran...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104067

    authors: Kandemir G,Smith S,Chen J,Joyce TJ

    更新日期:2020-12-01 00:00:00

  • Tensile behaviour of structurally gradient braided prostheses for anterior cruciate ligaments.

    abstract::Anterior cruciate ligament (ACL) is a key fibrous connective tissue that maintains the stability of a knee joint and it is the most commonly injured ligament of the knee. A synthetic prosthesis in the form of a braided structure can be an attractive alternative to biological grafts provided that the mechanical propert...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.09.018

    authors: Rawal A,Sibal A,Saraswat H,Quddus Khan S

    更新日期:2016-02-01 00:00:00

  • Fatigue properties of removable partial denture clasps fabricated by selective laser melting followed by heat treatment.

    abstract::The aim of the study was to investigate the effect of post-heat treatment on the microstructures and fatigue strengths of Co-Cr-Mo (CCM) clasps prepared by selective laser melting (SLM). Clasp specimens and rod-shaped specimens were fabricated by SLM using CCM powders with different angulations (0°, 45°, and 90°). Two...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.06.010

    authors: Kittikundecha N,Kajima Y,Takaichi A,Wai Cho HH,Htat HL,Doi H,Takahashi H,Hanawa T,Wakabayashi N

    更新日期:2019-10-01 00:00:00

  • Development of novel zirconia implant's materials gradated design with improved bioactive surface.

    abstract::Zirconia implants are becoming a preference choice for different applications such as knee, dental, among others. In order to improve osseointegration, implant's surfaces are usually coated with bioactive materials like hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) that are very similar to the calcium pho...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.02.022

    authors: Faria D,Pires JM,Boccaccini AR,Carvalho O,Silva FS,Mesquita-Guimarães J

    更新日期:2019-06-01 00:00:00

  • A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery.

    abstract::Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was sug...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.06.017

    authors: Ariza-Gracia MÁ,Ortillés Á,Cristóbal JÁ,Rodríguez Matas JF,Calvo B

    更新日期:2017-10-01 00:00:00

  • Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces.

    abstract::Bone is characterized with an optimized combination of high stiffness and toughness. The understanding of bone nanomechanics is critical to the development of new artificial biological materials with unique properties. In this work, the mechanical characteristics of the interfaces between osteopontin (OPN, a noncollag...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.04.002

    authors: Lai ZB,Wang M,Yan C,Oloyede A

    更新日期:2014-08-01 00:00:00

  • Fatigue and durability of Nitinol stents.

    abstract::Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2007.08.001

    authors: Pelton AR,Schroeder V,Mitchell MR,Gong XY,Barney M,Robertson SW

    更新日期:2008-04-01 00:00:00

  • Augmentation of core decompression with synthetic bone graft does not improve mechanical properties of the proximal femur.

    abstract::Core decompression is a minimally invasive surgical technique used to treat patients with avascular necrosis of the femoral head. The procedure requires an entry hole in the lateral cortex of the femur which potentially leaves patients susceptible to subtrochanteric fractures. The purpose of this study was to determin...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104263

    authors: Hockett SA,Sherrill JT,Self M,Mears SC,Barnes CL,Mannen EM

    更新日期:2021-03-01 00:00:00

  • A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    abstract::A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.08.028

    authors: Lee CS,Lee JM,Youn B,Kim HS,Shin JK,Goh TS,Lee JS

    更新日期:2017-01-01 00:00:00

  • A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying.

    abstract::The orthopedic application of Zn is limited owing to the poor strength and low plasticity. In this study, a novel strategy by combining rapid solidification obtained by selective laser melting (SLM) and alloying with Mg was proposed to improve the mechanical properties of Zn. The microstructures, mechanical properties...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.03.018

    authors: Yang Y,Yuan F,Gao C,Feng P,Xue L,He S,Shuai C

    更新日期:2018-06-01 00:00:00

  • Tissue mechanics of piled critical size biomimetic and biominerizable nanocomposites: Formation of bioreactor-induced stem cell gradients under perfusion and compression.

    abstract:BACKGROUND:Perfusion bioreactors are used to solve problems in critical size bone tissue engineering. Biominerizable and biocompatible nanocomposites are suitable scaffold materials for this purpose because they offer mineral components in organic carriers. Human adipose derived stem cells (ASCs) can potentially be use...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.03.022

    authors: Baumgartner W,Welti M,Hild N,Hess SC,Stark WJ,Bürgisser GM,Giovanoli P,Buschmann J

    更新日期:2015-07-01 00:00:00

  • An interface finite element model can be used to predict healing outcome of bone fractures.

    abstract::After fractures, bone can experience different potential outcomes: successful bone consolidation, non-union and bone failure. Although, there are a lot of factors that influence fracture healing, experimental studies have shown that the interfragmentary movement (IFM) is one of the main regulators for the course of bo...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.09.023

    authors: Alierta JA,Pérez MA,García-Aznar JM

    更新日期:2014-01-01 00:00:00

  • The use of hardened bone cement as an impaction grafting extender for revision hip arthroplasty.

    abstract::Impaction bone grafting is a method of restoring bone stock to patients who have suffered significant bone loss due to revision total hip surgery. The procedure requires morsellised cancellous bone (MCB) to be impacted into the site of bone loss in order to stabilise the prosthesis with the aim of long term resorption...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.11.002

    authors: Ruddy M,FitzPatrick DP,Stanton KT

    更新日期:2018-02-01 00:00:00

  • Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    abstract::Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 1...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.03.019

    authors: Swift NB,Hsiung BK,Kennedy EB,Tan KT

    更新日期:2016-08-01 00:00:00

  • A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    abstract::In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.07.041

    authors: Lei Y,Masjedi S,Ferdous Z

    更新日期:2017-11-01 00:00:00

  • Development of a bite force transducer for measuring maximum voluntary bite forces between individual opposing tooth surfaces.

    abstract::Bite forces are studied in order to understand a wide range of factors pertaining to the mastication system. Various strain gauge transducers have been employed to measure bite forces, with several descriptions of these available in the literature; unfortunately, many reports provide insufficient detail to enable accu...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103846

    authors: Jansen van Vuuren L,Jansen van Vuuren WA,Broadbent JM,Duncan WJ,Waddell JN

    更新日期:2020-09-01 00:00:00

  • A finite element analysis of diaphragmatic hernia repair on an animal model.

    abstract::The diaphragm is a mammalian skeletal muscle that plays a fundamental role in the process of respiration. Alteration of its mechanical properties due to a diaphragmatic hernia contributes towards compromising its respiratory functions, leading to the need for surgical intervention to restore the physiological conditio...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2018.06.005

    authors: de Cesare N,Trevisan C,Maghin E,Piccoli M,Pavan PG

    更新日期:2018-10-01 00:00:00

  • The applicability of PEEK-based abutment screws.

    abstract::The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2016.06.024

    authors: Schwitalla AD,Abou-Emara M,Zimmermann T,Spintig T,Beuer F,Lackmann J,Müller WD

    更新日期:2016-10-01 00:00:00

  • On collagen fiber morphoelasticity and homeostatic remodeling tone.

    abstract::A variety of biochemical and physical processes participate in the creation and maintenance of collagen in biological tissue. Under mechanical stimuli these collagen fibers undergo continuous processes of morphoelastic change. The model presented here is motivated by experimental reports of stretch-stabilization of th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.104154

    authors: Topol H,Demirkoparan H,Pence TJ

    更新日期:2021-01-01 00:00:00

  • Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds.

    abstract::Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of ...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103517

    authors: Arjunan A,Demetriou M,Baroutaji A,Wang C

    更新日期:2020-02-01 00:00:00

  • Microstructure and mechanical properties of MgO-stabilized ZrO₂-Al₂O₃ dental composites.

    abstract::The aim of the present study was to investigate the production of tetragonal zirconia (t-ZrO(2)) particles (experimental t-ZrO(2)) from monoclinic zirconia (m-ZrO(2)) and to evaluate the effect of the t-ZrO(2) content on the fracture toughness of alumina-zirconia composites by conducting ASTM E399 standard test. In th...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2012.11.007

    authors: Abi CB,Emrullahoğlu OF,Said G

    更新日期:2013-02-01 00:00:00

  • Preparation of low shrinkage methacrylate-based resin system without Bisphenol A structure by using a synthesized dendritic macromer (G-IEMA).

    abstract::With the growing attention on estrogenic effect of Bisphenol A (BPA), the application of BPA derivatives like Bis-GMA in dental materials has also been doubted. In this research, new BPA free dental resin systems were prepared with synthesized dendritic macromer G-IEMA, UDMA, and TEGDMA. Physicochemical properties, su...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2014.03.012

    authors: Yu B,Liu F,He J

    更新日期:2014-07-01 00:00:00

  • Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.

    abstract::The present study has two major purposes: firstly, to investigate whether the analytical model proposed by Jedwab and Clerc for assessing the mechanical behaviour of an open ends metallic braided stent is applicable to the looped ends stent design and secondly, to compare the response of the two stent designs subjecte...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.025

    authors: Shanahan C,Tiernan P,Tofail SAM

    更新日期:2017-11-01 00:00:00

  • Biomechanical and biochemical protective effect of low-level laser therapy for Achilles tendinitis.

    abstract::For three decades, low level laser therapy (LLLT) has been used for treatment of tendinitis as well as other musculoskeletal diseases. Nevertheless, the biological mechanisms involved remain not completely understood. In this work, the effects of LLLT and of the widely used nonsteroidal anti-inflammatory drug, diclofe...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2013.08.028

    authors: Marcos RL,Arnold G,Magnenet V,Rahouadj R,Magdalou J,Lopes-Martins RÁ

    更新日期:2014-01-01 00:00:00

  • Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    abstract::Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior....

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2015.11.026

    authors: Varga P,Schwiedrzik J,Zysset PK,Fliri-Hofmann L,Widmer D,Gueorguiev B,Blauth M,Windolf M

    更新日期:2016-04-01 00:00:00

  • Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro.

    abstract::High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revea...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.103451

    authors: Feng T,Niu J,Pi B,Lu Y,Wang J,Zhang W,Li B,Yang H,Zhu X

    更新日期:2020-01-01 00:00:00

  • A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation.

    abstract::Viscoelastic properties of the white matter brain tissue are systematically studied in this paper utilizing indentation experiments, mathematical modeling, and finite element simulation. It is first demonstrated that the internal stiffness of the instrument needs to be thoroughly obtained and incorporated in the analy...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2017.08.037

    authors: Samadi-Dooki A,Voyiadjis GZ,Stout RW

    更新日期:2018-01-01 00:00:00

  • A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.

    abstract::The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Int...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2020.103849

    authors: Baldwin SJ,Sampson J,Peacock CJ,Martin ML,Veres SP,Lee JM,Kreplak L

    更新日期:2020-10-01 00:00:00

  • Air-abrasion using new silica-alumina powders containing different silica concentrations: Effect on the microstructural characteristics and fatigue behavior of a Y-TZP ceramic.

    abstract::This study assessed the fatigue performance (biaxial flexure fatigue strength), surface characteristics (topography and roughness) and structural stability (t-m phase transformation) of a Y-TZP ceramic subjected to air-abrasion using new powders (7% and 20% silica-coated aluminum oxide particles) in comparison to comm...

    journal_title:Journal of the mechanical behavior of biomedical materials

    pub_type: 杂志文章

    doi:10.1016/j.jmbbm.2019.05.032

    authors: Cadore-Rodrigues AC,Prochnow C,Rippe MP,Oliveira JS,Jahn SL,Foletto EL,Pereira GKR,Valandro LF

    更新日期:2019-10-01 00:00:00