Programmable and printable Bacillus subtilis biofilms as engineered living materials.

Abstract:

:Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.

journal_name

Nat Chem Biol

journal_title

Nature chemical biology

authors

Huang J,Liu S,Zhang C,Wang X,Pu J,Ba F,Xue S,Ye H,Zhao T,Li K,Wang Y,Zhang J,Wang L,Fan C,Lu TK,Zhong C

doi

10.1038/s41589-018-0169-2

subject

Has Abstract

pub_date

2019-01-01 00:00:00

pages

34-41

issue

1

eissn

1552-4450

issn

1552-4469

pii

10.1038/s41589-018-0169-2

journal_volume

15

pub_type

杂志文章
  • Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells.

    abstract::Glycosyltransferases are ubiquitous enzymes that catalyze the assembly of glycoconjugates throughout all kingdoms of nature. A long-standing problem is the rational design of probes that can be used to manipulate glycosyltransferase activity in cells and tissues. Here we describe the rational design and synthesis of a...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.520

    authors: Gloster TM,Zandberg WF,Heinonen JE,Shen DL,Deng L,Vocadlo DJ

    更新日期:2011-03-01 00:00:00

  • Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair.

    abstract::The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-b...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2555

    authors: Uchida N,Takahashi K,Iwasaki R,Yamada R,Yoshimura M,Endo TA,Kimura S,Zhang H,Nomoto M,Tada Y,Kinoshita T,Itami K,Hagihara S,Torii KU

    更新日期:2018-03-01 00:00:00

  • Molecular basis for ubiquitin ligase CRL2FEM1C-mediated recognition of C-degron.

    abstract::Proteome integrity depends on the ubiquitin-proteasome system to degrade unwanted or abnormal proteins. In addition to the N-degrons, C-terminal residues of proteins can also serve as degradation signals (C-degrons) that are recognized by specific cullin-RING ubiquitin ligases (CRLs) for proteasomal degradation. FEM1C...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-020-00703-4

    authors: Yan X,Wang X,Li Y,Zhou M,Li Y,Song L,Mi W,Min J,Dong C

    更新日期:2021-01-04 00:00:00

  • Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli.

    abstract::Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by adjusting the osmolality of their cytoplasm. To obtain insights into the underlying metabolic adaptations, we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using nontargeted mass...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1437

    authors: Sévin DC,Sauer U

    更新日期:2014-04-01 00:00:00

  • Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome.

    abstract::Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.999

    authors: Rillahan CD,Antonopoulos A,Lefort CT,Sonon R,Azadi P,Ley K,Dell A,Haslam SM,Paulson JC

    更新日期:2012-07-01 00:00:00

  • Molecular basis for the P450-catalyzed C-N bond formation in indolactam biosynthesis.

    abstract::The catalytic versatility of cytochrome P450 monooxygenases is remarkable. Here, we present mechanistic and structural characterizations of TleB from Streptomyces blastmyceticus and its homolog HinD from Streptoalloteichus hindustanus, which catalyze unusual intramolecular C-N bond formation to generate indolactam V f...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-019-0380-9

    authors: He F,Mori T,Morita I,Nakamura H,Alblova M,Hoshino S,Awakawa T,Abe I

    更新日期:2019-12-01 00:00:00

  • Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b.

    abstract::Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-019-0393-4

    authors: Gonzalez-Delgado LS,Walters-Morgan H,Salamaga B,Robertson AJ,Hounslow AM,Jagielska E,Sabała I,Williamson MP,Lovering AL,Mesnage S

    更新日期:2020-01-01 00:00:00

  • Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator.

    abstract::Intracellular Ca(2+) regulates numerous proteins and cellular functions and can vary substantially over submicron and submillisecond scales, so precisely localized fast detection is desirable. We have created a approximately 1-kDa biarsenical Ca(2+) indicator, called Calcium Green FlAsH (CaGF, 1), to probe [Ca(2+)] su...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2007.4

    authors: Tour O,Adams SR,Kerr RA,Meijer RM,Sejnowski TJ,Tsien RW,Tsien RY

    更新日期:2007-07-01 00:00:00

  • Working towards an exegesis for lipids in biology.

    abstract::As a field, lipidomics is in its infancy, yet it has already begun to influence lipid biochemistry in myriad ways. As with other omic technologies, the field is driven by advances in analytical chemistry, particularly by mass spectrometry. At the heart of a renaissance in lipid biochemistry, systems biology is being u...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio0909-602

    authors: Brown HA,Murphy RC

    更新日期:2009-09-01 00:00:00

  • Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress.

    abstract::ADP-ribosylation is a post-translational modification that is known to be involved in cellular homeostasis and stress but has been challenging to analyze biochemically. To facilitate the detection of ADP-ribosylated proteins, we show that an alkyne-adenosine analog, N6-propargyl adenosine (N6pA), is metabolically inco...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2280

    authors: Westcott NP,Fernandez JP,Molina H,Hang HC

    更新日期:2017-03-01 00:00:00

  • N6-mA condenses chromatin.

    abstract:: ...

    journal_title:Nature chemical biology

    pub_type: 评论,杂志文章

    doi:10.1038/s41589-018-0199-9

    authors: Song Y

    更新日期:2019-01-01 00:00:00

  • A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis.

    abstract::Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.92

    authors: Jansson EA,Huang L,Malkey R,Govoni M,Nihlén C,Olsson A,Stensdotter M,Petersson J,Holm L,Weitzberg E,Lundberg JO

    更新日期:2008-07-01 00:00:00

  • Genome-wide chemical mapping of O-GlcNAcylated proteins in Drosophila melanogaster.

    abstract::N-Acetylglucosamine β-O-linked to nucleocytoplasmic proteins (O-GlcNAc) is implicated in the regulation of gene expression in organisms, from humans to Drosophila melanogaster. Within Drosophila, O-GlcNAc transferase (OGT) is one of the Polycomb group proteins (PcGs) that act through Polycomb group response elements (...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2247

    authors: Liu TW,Myschyshyn M,Sinclair DA,Cecioni S,Beja K,Honda BM,Morin RD,Vocadlo DJ

    更新日期:2017-02-01 00:00:00

  • Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase.

    abstract::Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93-Tyr157 cross-linked cofactor. Here, we investigated this Cys-Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a ge...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-018-0085-5

    authors: Li J,Griffith WP,Davis I,Shin I,Wang J,Li F,Wang Y,Wherritt DJ,Liu A

    更新日期:2018-09-01 00:00:00

  • Transcriptional recorder.

    abstract:: ...

    journal_title:Nature chemical biology

    pub_type: 评论,杂志文章

    doi:10.1038/s41589-018-0174-5

    authors: Song Y

    更新日期:2018-12-01 00:00:00

  • N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation.

    abstract::N6-Methyladenosine (m6A) RNA modification is present in messenger RNAs (mRNA), ribosomal RNAs (rRNA), and spliceosomal RNAs (snRNA) in humans. Although mRNA m6A modifications have been extensively studied and shown to play critical roles in many cellular processes, the identity of m6A methyltransferases for rRNAs and ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-018-0184-3

    authors: Ma H,Wang X,Cai J,Dai Q,Natchiar SK,Lv R,Chen K,Lu Z,Chen H,Shi YG,Lan F,Fan J,Klaholz BP,Pan T,Shi Y,He C

    更新日期:2019-01-01 00:00:00

  • Nitric oxide activates TRP channels by cysteine S-nitrosylation.

    abstract::Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, wh...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio821

    authors: Yoshida T,Inoue R,Morii T,Takahashi N,Yamamoto S,Hara Y,Tominaga M,Shimizu S,Sato Y,Mori Y

    更新日期:2006-11-01 00:00:00

  • CueR activates transcription through a DNA distortion mechanism.

    abstract::The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshapi...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-020-00653-x

    authors: Fang C,Philips SJ,Wu X,Chen K,Shi J,Shen L,Xu J,Feng Y,O'Halloran TV,Zhang Y

    更新日期:2021-01-01 00:00:00

  • Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis.

    abstract::Biosynthesis enables renewable production of manifold compounds, yet often biosynthetic performance must be improved for it to be economically feasible. Nongenetic, cell-to-cell variations in protein and metabolite concentrations are naturally inherent, suggesting the existence of both high- and low-performance varian...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2046

    authors: Xiao Y,Bowen CH,Liu D,Zhang F

    更新日期:2016-05-01 00:00:00

  • A bridge between chemistry and biology.

    abstract::Chemical biology is an interdisciplinary field that is undergoing rapid expansion around the globe. Recently, the Japanese Society for Chemical Biology sponsored its inaugural scientific meeting to discuss research at the interface of chemistry and biology. ...

    journal_title:Nature chemical biology

    pub_type:

    doi:10.1038/nchembio0806-392

    authors: Kikuchi K,Kakeya H

    更新日期:2006-08-01 00:00:00

  • Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation.

    abstract::Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 result...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-019-0420-5

    authors: Song J,Zhuang Y,Zhu C,Meng H,Lu B,Xie B,Peng J,Li M,Yi C

    更新日期:2020-02-01 00:00:00

  • Visualizing the secondary and tertiary architectural domains of lncRNA RepA.

    abstract::Long noncoding RNAs (lncRNAs) are important for gene expression, but little is known about their structures. RepA is a 1.6-kb mouse lncRNA comprising the same sequence as the 5' region of Xist, including A and F repeats. It has been proposed to facilitate the initiation and spread of X-chromosome inactivation, althoug...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2272

    authors: Liu F,Somarowthu S,Pyle AM

    更新日期:2017-03-01 00:00:00

  • Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate.

    abstract::Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant with an inactive AnsP1 revealed that the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutan...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1355

    authors: Gouzy A,Larrouy-Maumus G,Wu TD,Peixoto A,Levillain F,Lugo-Villarino G,Guerquin-Kern JL,de Carvalho LP,Poquet Y,Neyrolles O

    更新日期:2013-11-01 00:00:00

  • Learning biological networks: from modules to dynamics.

    abstract::Learning regulatory networks from genomics data is an important problem with applications spanning all of biology and biomedicine. Functional genomics projects offer a cost-effective means of greatly expanding the completeness of our regulatory models, and for some prokaryotic organisms they offer a means of learning ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章,评审

    doi:10.1038/nchembio.122

    authors: Bonneau R

    更新日期:2008-11-01 00:00:00

  • Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit.

    abstract::Many protein kinases are key nodal signaling molecules that regulate a wide range of cellular functions. These functions may require complex spatiotemporal regulation of kinase activities. Here, we show that protein kinase A (PKA), Ca(2+) and cyclic AMP (cAMP) oscillate in sync in insulin-secreting MIN6 beta cells, fo...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.478

    authors: Ni Q,Ganesan A,Aye-Han NN,Gao X,Allen MD,Levchenko A,Zhang J

    更新日期:2011-01-01 00:00:00

  • A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis.

    abstract::We report a salvage pathway in Gram-negative bacteria that bypasses de novo biosynthesis of UDP N-acetylmuramic acid (UDP-MurNAc), the first committed peptidoglycan precursor, and thus provides a rationale for intrinsic fosfomycin resistance. The anomeric sugar kinase AmgK and the MurNAc α-1-phosphate uridylyl transfe...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1289

    authors: Gisin J,Schneider A,Nägele B,Borisova M,Mayer C

    更新日期:2013-08-01 00:00:00

  • Heterogeneity in the chemistry, structure and function of plant cell walls.

    abstract::Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of deve...

    journal_title:Nature chemical biology

    pub_type: 杂志文章,评审

    doi:10.1038/nchembio.439

    authors: Burton RA,Gidley MJ,Fincher GB

    更新日期:2010-10-01 00:00:00

  • Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions.

    abstract::We report that simple glycoside donors can drastically shift the equilibria of glycosyltransferase-catalyzed reactions, transforming NDP-sugar formation from an endothermic to an exothermic process. To demonstrate the utility of this thermodynamic adaptability, we highlight the glycosyltransferase-catalyzed synthesis ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.638

    authors: Gantt RW,Peltier-Pain P,Cournoyer WJ,Thorson JS

    更新日期:2011-08-21 00:00:00

  • Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.

    abstract::A 2.4-Å-resolution X-ray crystal structure of the carrier-protein-independent halogenase WelO5 in complex with its welwitindolinone precursor substrate, 12-epi-fischerindole U, reveals that the C13 chlorination target is proximal to the anticipated site of the oxo group in a presumptive cis-halo-oxo-iron(IV) (haloferr...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2112

    authors: Mitchell AJ,Zhu Q,Maggiolo AO,Ananth NR,Hillwig ML,Liu X,Boal AK

    更新日期:2016-08-01 00:00:00

  • ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.

    abstract::Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2239

    authors: Doll S,Proneth B,Tyurina YY,Panzilius E,Kobayashi S,Ingold I,Irmler M,Beckers J,Aichler M,Walch A,Prokisch H,Trümbach D,Mao G,Qu F,Bayir H,Füllekrug J,Scheel CH,Wurst W,Schick JA,Kagan VE,Angeli JP,Conrad M

    更新日期:2017-01-01 00:00:00