Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2.

Abstract:

:Phagocytosis and macroautophagy/autophagy are 2 processes involved in lysosome-mediated clearance of extracellular and intracellular components, respectively. Recent studies have identified the recruitment of the autophagic protein LC3 during phagocytosis of apoptotic corpses in what is now called LC3-associated phagocytosis (LAP). LAP is a distinct process from autophagy but it relies on some members of the autophagy pathway to allow efficient degradation of the phagocytosed cargo. We investigated whether both LC3/LGG-2 and GABARAP/LGG-1 are involved in phagocytosis of apoptotic corpses during embryonic development of Caenorhabditis elegans. We discovered that both LGG-1 and LGG-2 are involved in the correct elimination of apoptotic corpses, but that they have different functions. lgg-1 and lgg-2 mutants present a delay in phagocytosis of apoptotic cells but genetic analyses indicate that LGG-1 and LGG-2 act upstream and downstream of the engulfment pathways, respectively. Moreover, LGG-1 and LGG-2 display different cellular localizations with enrichment in apoptotic corpses and phagocytic cells, respectively. For both LGG-1 and LGG-2, subcellular localization is vesicular and dependent on UNC-51/ULK1, BEC-1/BECN1 and the lipidation machinery, indicating that their functions during phagocytosis of apoptotic corpses mainly rely on autophagy. Finally, we show that LGG-1 is involved in the exposure of the 'eat-me signal' phosphatidylserine at the surface of the apoptotic cell to allow its recognition by the phagocytic cell, whereas LGG-2 is involved in later steps of phagocytosis to allow efficient cell corpse clearance by mediating the maturation/degradation of the phagosome.

journal_name

Autophagy

journal_title

Autophagy

authors

Jenzer C,Simionato E,Largeau C,Scarcelli V,Lefebvre C,Legouis R

doi

10.1080/15548627.2018.1512452

subject

Has Abstract

pub_date

2019-02-01 00:00:00

pages

228-241

issue

2

eissn

1554-8627

issn

1554-8635

journal_volume

15

pub_type

杂志文章
  • The "found-art vacuole"-people learn in different ways.

    abstract::Based on my reading, and on my own experience, I have come to realize that people learn in different ways, and this can include the use of different media. This is one reason I have worked with various artists to portray the topic of autophagy through paintings, music and dance. Indeed, comments from members of the au...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1630225

    authors: Klionsky DJ

    更新日期:2019-09-01 00:00:00

  • Stimulation of ATG12-ATG5 conjugation by ribonucleic acid.

    abstract::The ubiquitin-like conjugation reactions, ATG8/microtubule-associated protein 1 light chain 3/MAP1LC3 (LC3) to phosphatidylethanolamine (PE) and ATG12 to ATG5, are biochemical hallmarks for autophagy, a cellular process that degrades bulk cellular proteins and organelles. The two conjugation reactions share the same E...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.3270

    authors: Shao Y,Gao Z,Feldman T,Jiang X

    更新日期:2007-01-01 00:00:00

  • Harpooning the Cvt complex to the phagophore assembly site.

    abstract::Autophagy is a catabolic process employed by eukaryotes to degrade and recycle intracellular components. When this pathway is induced by starvation conditions, part of the cytoplasm and organelles are sequestered into double-membrane vesicles called autophagosomes, and delivered into the lysosome/vacuole for degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6657

    authors: Monastyrska I,Reggiori F,Klionsky DJ

    更新日期:2008-10-01 00:00:00

  • PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5.

    abstract::Macroautophagy is induced under various stresses to remove cytotoxic materials, including misfolded proteins and their aggregates. These protein cargoes are collected by specific autophagic receptors such as SQSTM1/p62 (sequestosome 1) and delivered to phagophores for lysosomal degradation. To date, little is known ab...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1491212

    authors: Lee DH,Kim D,Kim ST,Jeong S,Kim JL,Shim SM,Heo AJ,Song X,Guo ZS,Bartlett DL,Oh SC,Lee J,Saito Y,Kim BY,Kwon YT,Lee YJ

    更新日期:2018-01-01 00:00:00

  • Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    abstract::The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.7.15596

    authors: Yang DS,Stavrides P,Mohan PS,Kaushik S,Kumar A,Ohno M,Schmidt SD,Wesson DW,Bandyopadhyay U,Jiang Y,Pawlik M,Peterhoff CM,Yang AJ,Wilson DA,St George-Hyslop P,Westaway D,Mathews PM,Levy E,Cuervo AM,Nixon RA

    更新日期:2011-07-01 00:00:00

  • A role for Atg8-PE deconjugation in autophagosome biogenesis.

    abstract::Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosom...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19385

    authors: Nair U,Yen WL,Mari M,Cao Y,Xie Z,Baba M,Reggiori F,Klionsky DJ

    更新日期:2012-05-01 00:00:00

  • CYB5A and autophagy-mediated cell death in pancreatic cancer.

    abstract::The highly invasive and chemoresistant phenotype of pancreatic cancer highlights the urgency to identify prognostic biomarkers and novel therapeutic targets. Recently, we observed a significant correlation between shorter survival and loss of the cytoband 18q22.3. Here we investigated genes encoded by this cytoband, a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.27803

    authors: Giovannetti E,Giaccone G

    更新日期:2014-04-01 00:00:00

  • Mitochondrial elongation during autophagy: a stereotypical response to survive in difficult times.

    abstract::Mitochondrial morphological and structural changes play a role in several cellular processes, including apoptosis. We recently reported that mitochondrial elongation is also critical to sustain cell viability during macroautophagy. During macroautophagy unopposed mitochondrial fusion leads to organelle elongation both...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16771

    authors: Gomes LC,Scorrano L

    更新日期:2011-10-01 00:00:00

  • Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy.

    abstract::Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1098798

    authors: Wang Y,Cai S,Yin L,Shi K,Xia X,Zhou Y,Yu J,Zhou J

    更新日期:2015-11-02 00:00:00

  • Cytoprotective and nonprotective autophagy in cancer therapy.

    abstract::Two primary forms of autophagy have been identified in the field of cancer therapy based on their apparent functions in the tumor cell; these are the cytoprotective form that could, in theory, be inhibited for the purpose of sensitization to radiation and chemotherapeutic drugs and the "cytotoxic" form that either med...

    journal_title:Autophagy

    pub_type: 社论

    doi:10.4161/auto.25233

    authors: Gewirtz DA

    更新日期:2013-09-01 00:00:00

  • Rph1 mediates the nutrient-limitation signaling pathway leading to transcriptional activation of autophagy.

    abstract::To maintain proper cellular homeostasis, the magnitude of autophagy activity has to be finely tuned in response to environmental changes. Many aspects of autophagy regulation have been extensively studied: pathways integrating signals through the master regulators TORC1 and PKA lead to multiple post-translational modi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1018503

    authors: Bernard A,Klionsky DJ

    更新日期:2015-04-03 00:00:00

  • An integrative multi-omics approach uncovers the regulatory role of CDK7 and CDK4 in autophagy activation induced by silica nanoparticles.

    abstract::Dysfunction of macroautophagy/autophagy has been postulated as a major cellular toxicological response to nanomaterials. It has been reported that excessive autophagy activation, induced by silica nanoparticles (SiNPs), contributes to autophagy dysfunction, whereas little is known how SiNPs trigger autophagy activatio...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1763019

    authors: Ruan C,Wang C,Gong X,Zhang Y,Deng W,Zhou J,Huang D,Wang Z,Zhang Q,Guo A,Lu J,Gao J,Peng D,Xue Y

    更新日期:2020-05-23 00:00:00

  • Distinct patterns of autophagy evoked by two benzoxazine derivatives in vascular endothelial cells.

    abstract::Macroautophagy (referred to as autophagy) is an evolutionarily conserved, bulk-destruction process in eukaryotes. During this process, the cytoplasm containing long-lived proteins and organelles is engulfed into double-membrane autophagosomes, and ultimately undergoes enzymatic degradation within lysosomes. Autophagy ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13508

    authors: Wang L,Dong Z,Huang B,Zhao B,Wang H,Zhao J,Kung H,Zhang S,Miao J

    更新日期:2010-11-01 00:00:00

  • Autophagy protects renal tubular cells against cyclosporine toxicity.

    abstract::A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endo...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6477

    authors: Pallet N,Bouvier N,Legendre C,Gilleron J,Codogno P,Beaune P,Thervet E,Anglicheau D

    更新日期:2008-08-01 00:00:00

  • m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7.

    abstract:N:6-methyladenosine (m6A), the most abundant internal modification on mRNAs in eukaryotes, play roles in adipogenesis. However, the underlying mechanism remains largely unclear. Here, we show that m6A plays a critical role in regulating macroautophagy/autophagy and adipogenesis through targeting Atg5 and Atg7. Mechanis...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1659617

    authors: Wang X,Wu R,Liu Y,Zhao Y,Bi Z,Yao Y,Liu Q,Shi H,Wang F,Wang Y

    更新日期:2020-07-01 00:00:00

  • Disease relevance of phosphorylated ubiquitin (p-S65-Ub).

    abstract::Here, we present a summary of our recent findings on the (patho-)physiological relevance of PINK1-phosphorylated ubiquitin (p-S65-Ub). Using novel polyclonal antibodies, we find that p-S65-Ub specifically accumulates on damaged mitochondria. Phosphorylation of ubiquitin on serine 65 depends on the activity of PINK1 an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1091912

    authors: Fiesel FC,Springer W

    更新日期:2015-11-02 00:00:00

  • Broadening the therapeutic scope for rapamycin treatment.

    abstract::The role of autophagy in the degradation of aggregate-prone proteins has been well established. As a result, autophagy upregulation has become an attractive therapeutic strategy for the treatment of proteinopathies, a group of diseases caused by the accumulation of mutant misfolded proteins. We have previously shown t...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.2.11078

    authors: Menzies FM,Rubinsztein DC

    更新日期:2010-02-01 00:00:00

  • UVRAG: at the crossroad of autophagy and genomic stability.

    abstract::UVRAG is a promoter of the autophagy pathway, and its deficiency may fuel the development of cancers. Intriguingly, our recent study has demonstrated that this protein also mediates the repair of damaged DNA and patrols centrosome stability, mechanisms that commonly prevent cancer progression, in a manner independent ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21035

    authors: Zhao Z,Ni D,Ghozalli I,Pirooz SD,Ma B,Liang C

    更新日期:2012-09-01 00:00:00

  • Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy.

    abstract::Autophagy resembles a recycling process in which proteins, organelles, or regions of the cytoplasm are enveloped and degraded. We have found that two of the central autophagy proteins, MAP1LC3 (microtubule-associated protein 1 light chain 3, also described as LC3) and UVRAG (UV radiation resistance associated/UV radia...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.25889

    authors: Mir SU,Schwarze SR,Jin L,Zhang J,Friend W,Miriyala S,St Clair D,Craven RJ

    更新日期:2013-10-01 00:00:00

  • One step closer to understanding mammalian macroautophagy initiation: Interplay of 2 HORMA architectures in the ULK1 complex.

    abstract::ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1087635

    authors: Popelka H,Klionsky DJ

    更新日期:2015-11-02 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • Chaperone-mediated autophagy: the heretofore untold story of J. Fred "Paulo" Dice. Interview by Daniel J. Klionsky.

    abstract::The best-characterized process of autophagy is macroautophagy. Many an article or talk has started with the phrase "...macroautophagy, hereafter referred to as autophagy." This one will be different because we are going to learn more about the person most responsible for increasing our understanding of chaperone-media...

    journal_title:Autophagy

    pub_type: 传,历史文章,杂志文章

    doi:10.4161/auto.5.8.9476

    authors: Dice JF

    更新日期:2009-11-01 00:00:00

  • Suppressing the dark side of autophagy.

    abstract::A wide variety of genetic, pharmacological and nutrient manipulations that extend lifespan in model organisms do so in a manner dependent upon increased autophagic flux. However, our recent findings suggest that when mitochondrial membrane integrity is compromised, macroautophagy/autophagy can be detrimental. In C. el...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1644077

    authors: Zhou B,Soukas AA

    更新日期:2019-10-01 00:00:00

  • TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes.

    abstract::Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disease with severe inflammatory symptoms in the axial skeleton. The cause of ankylosing spondylitis is unknown. TNFAIP3, also named A20, uses ubiquitin-related functions to regulate immune activation, deficiency of which is highly related to autoimmune ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1458804

    authors: Zhai Y,Lin P,Feng Z,Lu H,Han Q,Chen J,Zhang Y,He Q,Nan G,Luo X,Wang B,Feng F,Liu F,Chen Z,Zhu P

    更新日期:2018-01-01 00:00:00

  • Regulation and repurposing of nutrient sensing and autophagy in innate immunity.

    abstract::Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin kinase), which is ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1783119

    authors: Sanchez-Garrido J,Shenoy AR

    更新日期:2020-07-05 00:00:00

  • Purification of autophagosomes from rat hepatocytes.

    abstract::To facilitate the purification of rat liver autophagosomes, isolated rat hepatocytes are first incubated for 2 h at 37°C with vinblastine, which induces autophagosome accumulation by blocking the fusion of these organelles with endosomes and lysosomes. The hepatocytes are then electrodisrupted and homogenized, and the...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.4.11272

    authors: Seglen PO,Brinchmann MF

    更新日期:2010-05-01 00:00:00

  • Q6, a novel hypoxia-targeted drug, regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma.

    abstract::Tumor hypoxia underlies treatment failure and yields more aggressive and metastatic cancer phenotypes. Although therapeutically targeting these hypoxic environments has been proposed for many years, to date no approaches have shown the therapeutic value to gain regulatory approval. Here, we demonstrated that a novel h...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26838

    authors: Liu XW,Cai TY,Zhu H,Cao J,Su Y,Hu YZ,He QJ,Yang B

    更新日期:2014-01-01 00:00:00

  • Regulation of JMY's actin nucleation activity by TTC5/STRAP and LC3 during autophagy.

    abstract::Actin plays indispensable roles in autophagosome biogenesis. Branched actin networks assembled within phagophore membranes are required for generating the autophagosome membrane shape and movement. The ARP2/3 complex and its regulators, such as JMY (junction mediating and regulatory protein, p53 cofactor), translocate...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2018.1564417

    authors: Liu X,Klionsky DJ

    更新日期:2019-03-01 00:00:00

  • Cell-autonomous, paracrine and neuroendocrine feedback regulation of autophagy by DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein): the obesity factor.

    abstract::DBI/ACBP (diazepam binding protein, acyl-CoA binding protein) participates in the regulation of fatty acid metabolism when it is localized within cells, whereas outside of cells it acts as a diazepam-binding protein. Recent results indicate that many different mammalian cell types release DBI/ACBP upon in vitro or in ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1662585

    authors: Bravo-San Pedro JM,Sica V,Martins I,Anagnostopoulos G,Maiuri C,Kroemer G

    更新日期:2019-11-01 00:00:00

  • Autophagy and proteotoxicity in cardiomyocytes.

    abstract::Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. We wished to determine if autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. We used loss- and gain...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.10.16882

    authors: Pattison JS,Robbins J

    更新日期:2011-10-01 00:00:00