Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.

Abstract:

:2-Pyrone-4,6-dicarboxylic acid (PDC) is a pseudoaromatic dicarboxylic acid and is a promising biobased building block chemical that can be used to make diverse polyesters with novel functionalities. In this study, Escherichia coli was metabolically engineered to produce PDC from glucose. First, an efficient biosynthetic pathway for PDC production from glucose was suggested by in silico metabolic flux simulation. This best pathway employs a single-step biosynthetic route to protocatechuic acid (PCA), a metabolic precursor for PDC biosynthesis. On the basis of the selected PDC biosynthetic pathway, a shikimate dehydrogenase (encoded by aroE)-deficient E. coli strain was engineered by introducing heterologous genes of different microbial origin encoding enzymes responsible for converting 3-dehydroshikimate (DHS) to PDC, which allowed de novo biosynthesis of PDC from glucose. Next, production of PDC was further improved by applying stepwise rational metabolic engineering strategies. These include elimination of feedback inhibition on 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (encoded by aroG) by overexpressing a feedback-resistant variant, enhancement of the precursor phosphoenolpyruvate supply by changing the native promoter of the ppsA gene with the strong trc promoter, and reducing accumulation of the major byproduct DHS by overexpression of a DHS importer (encoded by shiA). Furthermore, cofactor (NADP+/NADPH) utilization was manipulated through genetic modifications of the E. coli soluble pyridine nucleotide transhydrogenase (encoded by sthA), and the resultant impact on PDC production was investigated. Fed-batch fermentation of the final engineered E. coli strain allowed production of 16.72 g/L of PDC from glucose with the yield and productivity of 0.201 g/g and 0.172 g/L/h, respectively, representing the highest PDC production performance indices reported to date.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Luo ZW,Kim WJ,Lee SY

doi

10.1021/acssynbio.8b00281

subject

Has Abstract

pub_date

2018-09-21 00:00:00

pages

2296-2307

issue

9

issn

2161-5063

journal_volume

7

pub_type

杂志文章
  • Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli.

    abstract::We have previously engineered green/red and red/far red photoreversible E. coli phytochrome and cyanobacteriochrome (CBCR) two-component systems (TCSs) and utilized them to program tailor-made gene expression signals for gene circuit characterization. Here, we transport the UV-violet/green photoreversible CBCR TCS Uir...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00068

    authors: Ramakrishnan P,Tabor JJ

    更新日期:2016-07-15 00:00:00

  • Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch.

    abstract::To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Coloca...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00012

    authors: Kirkpatrick RL,Lewis K,Langan RA,Lajoie MJ,Boyken SE,Eakman M,Baker D,Zalatan JG

    更新日期:2020-09-18 00:00:00

  • Reprogramming the Transcriptional Response to Hypoxia with a Chromosomally Encoded Cyclic Peptide HIF-1 Inhibitor.

    abstract::The cellular response to hypoxia is orchestrated by HIF-1, a heterodimeric transcription factor composed of an α and a β subunit that enables cell survival under low oxygen conditions by altering the transcription of over 300 genes. There is significant evidence that inhibition of HIF-1 would be beneficial for cancer ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00219

    authors: Mistry IN,Tavassoli A

    更新日期:2017-03-17 00:00:00

  • Design of a Temperature-Responsive Transcription Terminator.

    abstract::RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translat...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00356

    authors: Roßmanith J,Weskamp M,Narberhaus F

    更新日期:2018-02-16 00:00:00

  • Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in Escherichia coli.

    abstract::The structural complexity of nonribosomal peptides (NRPs) impeding economic chemical synthesis and poor cultivability of source organisms limits the development of bioprocesses for novel bioactive compounds. Since nonribosomal peptide synthetases (NRPSs) assemble NRPs from simple amino acid building blocks, heterologo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400082j

    authors: Jaitzig J,Li J,Süssmuth RD,Neubauer P

    更新日期:2014-07-18 00:00:00

  • Synthetic Biogenesis of Bacterial Amyloid Nanomaterials with Tunable Inorganic-Organic Interfaces and Electrical Conductivity.

    abstract::Amyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00166

    authors: Seker UO,Chen AY,Citorik RJ,Lu TK

    更新日期:2017-02-17 00:00:00

  • Self-Assembling RNA Nanoparticle for Gene Expression Regulation in a Model System.

    abstract::In the search for enzymatically processed RNA fragments, we found the novel three-way junction motif. The structure prediction suggested the arrangement of helices at acute angle approx. 60°. This allows the design of a trimeric RNA nanoparticle that can be functionalized with multiple regulatory fragments. Such RNA n...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00319

    authors: Jedrzejczyk D,Chworos A

    更新日期:2019-03-15 00:00:00

  • A Genetically Encoded Protein Polymer for Uranyl Binding and Extraction Based on the SpyTag-SpyCatcher Chemistry.

    abstract::A defining goal of synthetic biology is to develop biomaterials with superior performance and versatility. Here we introduce a purely genetically encoded and self-assembling biopolymer based on the SpyTag-SpyCatcher chemistry. We show the application of this polymer for highly efficient uranyl binding and extraction f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00223

    authors: Yang X,Wei J,Wang Y,Yang C,Zhao S,Li C,Dong Y,Bai K,Li Y,Teng H,Wang D,Lyu N,Li J,Chang X,Ning X,Ouyang Q,Zhang Y,Qian L

    更新日期:2018-10-19 00:00:00

  • Transcription activator-like effectors: a toolkit for synthetic biology.

    abstract::Transcription activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria to aid the infection of plant species. TALEs assist infections by binding to specific DNA sequences and activating the expression of host genes. Recent results show that TALE proteins consist of a central repeat domain, which ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章,评审

    doi:10.1021/sb400137b

    authors: Moore R,Chandrahas A,Bleris L

    更新日期:2014-10-17 00:00:00

  • Boolean Computation in Plants Using Post-translational Genetic Control and a Visual Output Signal.

    abstract::Due to autotrophic growing capacity and extremely rich secondary metabolism, plants should be preferred targets of synthetic biology. However, developments in plants usually run below those in other taxonomic groups. In this work we engineered genetic circuits capable of logic YES, OR and AND Boolean computation in pl...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00214

    authors: Cordero T,Rosado A,Majer E,Jaramillo A,Rodrigo G,Daròs JA

    更新日期:2018-10-19 00:00:00

  • Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.

    abstract::To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00280

    authors: Jayaraman P,Yeoh JW,Zhang J,Poh CL

    更新日期:2018-11-16 00:00:00

  • Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis.

    abstract::In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnol...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300102k

    authors: Carapezza G,Umeton R,Costanza J,Angione C,Stracquadanio G,Papini A,Lió P,Nicosia G

    更新日期:2013-05-17 00:00:00

  • Active Analyte Import Improves the Dynamic Range and Sensitivity of a Vitamin B12 Biosensor.

    abstract::Cell-free systems provide a versatile platform for the development of low-cost, easy-to-use sensors for diverse analytes. However, sensor affinity dictates response sensitivity, and improving binding affinity can be challenging. Here, we describe efforts to address this problem while developing a biosensor for vitamin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00429

    authors: McNerney MP,Piorino F,Michel CL,Styczynski MP

    更新日期:2020-02-21 00:00:00

  • Probing Yeast Polarity with Acute, Reversible, Optogenetic Inhibition of Protein Function.

    abstract::We recently developed a technique for rapidly and reversibly inhibiting protein function through light-inducible sequestration of proteins away from their normal sites of action. Here, we adapt this method for inducible inactivation of Bem1, a scaffold protein involved in budding yeast polarity. We find that acute inh...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00053

    authors: Jost AP,Weiner OD

    更新日期:2015-10-16 00:00:00

  • Exploring Catalysis Specificity of Phytoene Dehydrogenase CrtI in Carotenoid Synthesis.

    abstract::Carotenoids, a variety of natural products, have significant pharmaceutical and commercial potential. Phytoene dehydrogenase (CrtI) is the rate-limit enzyme for carotenoid synthesis, whose catalysis specificity results in various carotenoids. However, the structural characteristics of CrtI for controlling the catalysi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00128

    authors: Liang N,Chen C,Wang Y,Ding MZ,Yao MD,Xiao WH,Yuan YJ

    更新日期:2020-07-17 00:00:00

  • Exploring Chemical Biosynthetic Design Space with Transform-MinER.

    abstract::Transform-MinER (Transforming Molecules in Enzyme Reactions) is a web application facilitating the exploration of chemical biosynthetic space, guiding the user toward promising start points for enzyme design projects or directed evolution experiments. Two types of search are possible: Molecule Search allows a user to ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00105

    authors: Tyzack JD,Ribeiro AJM,Borkakoti N,Thornton JM

    更新日期:2019-11-15 00:00:00

  • Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation.

    abstract::Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00211

    authors: Chomvong K,Lin E,Blaisse M,Gillespie AE,Cate JH

    更新日期:2017-02-17 00:00:00

  • Systematic Tools for Reprogramming Plant Gene Expression in a Simple Model, Marchantia polymorpha.

    abstract::We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00511

    authors: Sauret-Güeto S,Frangedakis E,Silvestri L,Rebmann M,Tomaselli M,Markel K,Delmans M,West A,Patron NJ,Haseloff J

    更新日期:2020-04-17 00:00:00

  • Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli.

    abstract::We developed a hybrid synthetic circuit that co-opts the genetic regulation of the native bacterial quorum sensing autoinducer-2 and imposes an extra external controller for maintaining tightly controlled gene expression. This dual-input genetic controller was mathematically modeled and, by design, can be operated in ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00179

    authors: Hauk P,Stephens K,Virgile C,VanArsdale E,Pottash AE,Schardt JS,Jay SM,Sintim HO,Bentley WE

    更新日期:2020-10-16 00:00:00

  • A System for Gene Expression Noise Control in Yeast.

    abstract::Gene expression noise arises from stochastic variation in the synthesis and degradation of mRNA and protein molecules and creates differences in protein numbers across populations of genetically identical cells. Such variability can lead to imprecision and reduced performance of both native and synthetic networks. In ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00279

    authors: Mundt M,Anders A,Murray SM,Sourjik V

    更新日期:2018-11-16 00:00:00

  • A Lambda Red and FLP/FRT-Mediated Site-Specific Recombination System in Komagataeibacter xylinus and Its Application to Enhance the Productivity of Bacterial Cellulose.

    abstract::Komagataeibacter xylinus has received increasing attention as an important microorganism for the conversion of several carbon sources to bacterial cellulose (BC). However, BC productivity has been impeded by the lack of efficient genetic engineering techniques. In this study, a lambda Red and FLP/FRT-mediated site-spe...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00450

    authors: Liu LP,Yang X,Zhao XJ,Zhang KY,Li WC,Xie YY,Jia SR,Zhong C

    更新日期:2020-11-20 00:00:00

  • Semisupervised Gaussian Process for Automated Enzyme Search.

    abstract::Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such desi...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00294

    authors: Mellor J,Grigoras I,Carbonell P,Faulon JL

    更新日期:2016-06-17 00:00:00

  • Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis.

    abstract::A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00254

    authors: Duran-Nebreda S,Solé RV

    更新日期:2016-07-15 00:00:00

  • Identifying Improved Sites for Heterologous Gene Integration Using ATAC-seq.

    abstract::Constructing efficient cellular factories often requires integration of heterologous pathways for synthesis of novel compounds and improved cellular productivity. Few genomic sites are routinely used, however, for efficient integration and expression of heterologous genes, especially in nonmodel hosts. Here, a data-gu...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00299

    authors: Brady JR,Tan MC,Whittaker CA,Colant NA,Dalvie NC,Love KR,Love JC

    更新日期:2020-09-18 00:00:00

  • Exploiting Single Domain Antibodies as Regulatory Parts to Modulate Monoterpenoid Production in E. coli.

    abstract::Synthetic biology and metabolic engineering offer potentially green and attractive routes to the production of high value compounds. The provision of high-quality parts and pathways is crucial in enabling the biosynthesis of chemicals using synthetic biology. While a number of regulatory parts that provide control at ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00375

    authors: Wilkes J,Scott-Tucker A,Wright M,Crabbe T,Scrutton NS

    更新日期:2020-10-16 00:00:00

  • Rational design of Escherichia coli for L-isoleucine production.

    abstract::Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing L-isoleucine, an important branched-chain amino acid. The thrABC (encoding L-threonine biosynthetic enzymes), ilvA (encoding feedback-resistant threonine dehydratase), ilvIH (encoding feedb...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb300071a

    authors: Park JH,Oh JE,Lee KH,Kim JY,Lee SY

    更新日期:2012-11-16 00:00:00

  • Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    abstract::Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducib...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00253

    authors: Didovyk A,Tonooka T,Tsimring L,Hasty J

    更新日期:2017-12-15 00:00:00

  • Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening.

    abstract::As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00083

    authors: Li T,Ye J,Shen R,Zong Y,Zhao X,Lou C,Chen GQ

    更新日期:2016-11-18 00:00:00

  • The spinach RNA aptamer as a characterization tool for synthetic biology.

    abstract::Characterization of genetic control elements is essential for the predictable engineering of synthetic biology systems. The current standard for in vivo characterization of control elements is through the use of fluorescent reporter proteins such as green fluorescent protein (GFP). Gene expression, however, involves n...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400089c

    authors: Pothoulakis G,Ceroni F,Reeve B,Ellis T

    更新日期:2014-03-21 00:00:00

  • Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry.

    abstract::Noncanonical amino acids form a highly diverse pool of building blocks that can render unique physicochemical properties to peptides and proteins. Here, four methionine analogues with unsaturated and varying side chain lengths were successfully incorporated at four different positions in nisin in Lactococcus lactis th...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00308

    authors: Deng J,Viel JH,Chen J,Kuipers OP

    更新日期:2020-09-18 00:00:00