Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry.

Abstract:

:Noncanonical amino acids form a highly diverse pool of building blocks that can render unique physicochemical properties to peptides and proteins. Here, four methionine analogues with unsaturated and varying side chain lengths were successfully incorporated at four different positions in nisin in Lactococcus lactis through force feeding. This approach allows for residue-specific incorporation of methionine analogues into nisin to expand their structural diversity and alter their activity profiles. Moreover, the insertion of methionine analogues with biorthogonal chemical reactivity, e.g., azidohomoalanine and homopropargylglycine, provides the opportunity for chemical coupling to functional moieties and fluorescent probes as well as for intermolecular coupling of nisin variants. All resulting nisin conjugates retained antimicrobial activity, which substantiates the potential of this method as a tool to further study its localization and mode of action.

journal_name

ACS Synth Biol

journal_title

ACS synthetic biology

authors

Deng J,Viel JH,Chen J,Kuipers OP

doi

10.1021/acssynbio.0c00308

subject

Has Abstract

pub_date

2020-09-18 00:00:00

pages

2525-2536

issue

9

issn

2161-5063

journal_volume

9

pub_type

杂志文章
  • Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1.

    abstract::Synthetic biology involves reprogramming and engineering of regulatory genes in innovative ways for the implementation of novel tasks. Transcriptional gene regulation systems induced by small molecules in prokaryotes provide a rich source for logic gates. Cross-regulation, whereby a promoter is activated by different ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb3000244

    authors: Zhang D,Zhao Y,He Y,Wang Y,Zhao Y,Zheng Y,Wei X,Zhang L,Li Y,Jin T,Wu L,Wang H,Davison PA,Xu J,Huang WE

    更新日期:2012-07-20 00:00:00

  • Single-Molecule Kinetics Show DNA Pyrimidine Content Strongly Affects RNA:DNA and TNA:DNA Heteroduplex Dissociation Rates.

    abstract::The heteroduplex hybridization thermodynamics of DNA with either RNA or TNA are greatly affected by DNA pyrimidine content, where increased DNA pyrimidine content leads to significantly increased duplex stability. Little is known, however, about the effect that purine or pyrimidine content has on the hybridization kin...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00471

    authors: Lackey HH,Chen Z,Harris JM,Peterson EM,Heemstra JM

    更新日期:2020-02-21 00:00:00

  • Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.

    abstract::To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00280

    authors: Jayaraman P,Yeoh JW,Zhang J,Poh CL

    更新日期:2018-11-16 00:00:00

  • Bioprinting Living Biofilms through Optogenetic Manipulation.

    abstract::In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00003

    authors: Huang Y,Xia A,Yang G,Jin F

    更新日期:2018-05-18 00:00:00

  • Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins.

    abstract::In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repert...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb500252a

    authors: Piñero-Lambea C,Bodelón G,Fernández-Periáñez R,Cuesta AM,Álvarez-Vallina L,Fernández LÁ

    更新日期:2015-04-17 00:00:00

  • Sequence Specific Modeling of E. coli Cell-Free Protein Synthesis.

    abstract::Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence sp...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00465

    authors: Vilkhovoy M,Horvath N,Shih CH,Wayman JA,Calhoun K,Swartz J,Varner JD

    更新日期:2018-08-17 00:00:00

  • 3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.

    abstract::Bacterial biofilms are three-dimensional networks of cells entangled in a self-generated extracellular polymeric matrix composed of proteins, lipids, polysaccharides, and nucleic acids. Biofilms can establish themselves on virtually any accessible surface and lead to varying impacts ranging from infectious diseases to...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00192

    authors: Balasubramanian S,Aubin-Tam ME,Meyer AS

    更新日期:2019-07-19 00:00:00

  • Engineered Bacterial Production of Volatile Methyl Salicylate.

    abstract::The engineering of microbial metabolic pathways over the last two decades has led to numerous examples of cell factories used for the production of small molecules. These molecules have an array of utility in commercial industries and as in situ expressed biomarkers or therapeutics in microbial applications. While mos...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00497

    authors: Chien T,Jones DR,Danino T

    更新日期:2021-01-15 00:00:00

  • Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli.

    abstract::Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glyc...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00404

    authors: Zhan T,Chen Q,Zhang C,Bi C,Zhang X

    更新日期:2020-09-18 00:00:00

  • Rapid Fabrication of Protein Microarrays via Autogeneration and on-Chip Purification of Biotinylated Probes.

    abstract::A streamlined approach toward the rapid fabrication of streptavidin-biotin-based protein microarrays was investigated. First, using our engineered versatile plasmid (pBADcM-tBirA) and an optimal coexpression strategy for biotin ligase and biotin acceptor peptide (BAP) chimeric recombinant protein, an autogeneration sy...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00343

    authors: Li BW,Zhang Y,Wang YC,Xue Y,Nie XY

    更新日期:2020-09-18 00:00:00

  • A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.

    abstract::Most of the current methods for controlling the formation rate of a key protein or enzyme in cell factories rely on the manipulation of target genes within the pathway. In this article, we present a novel synthetic system for post-translational regulation of protein levels, FENIX, which provides both independent contr...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00345

    authors: Durante-Rodríguez G,de Lorenzo V,Nikel PI

    更新日期:2018-11-16 00:00:00

  • The spinach RNA aptamer as a characterization tool for synthetic biology.

    abstract::Characterization of genetic control elements is essential for the predictable engineering of synthetic biology systems. The current standard for in vivo characterization of control elements is through the use of fluorescent reporter proteins such as green fluorescent protein (GFP). Gene expression, however, involves n...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400089c

    authors: Pothoulakis G,Ceroni F,Reeve B,Ellis T

    更新日期:2014-03-21 00:00:00

  • Combinatory Biosynthesis of Prenylated 4-Hydroxybenzoate Derivatives by Overexpression of the Substrate-Promiscuous Prenyltransferase XimB in Engineered E. coli.

    abstract::Prenylated aromatic compounds are important intermediates in the biosynthesis of bioactive molecules such as 3-chromanols from plants, ubiquinones from prokaryotes and meroterpenoids from sponges. Biosynthesis of prenylated aromatic compounds using prokaryotic microorganisms has attracted increasing attention in the f...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00070

    authors: He BB,Bu XL,Zhou T,Li SM,Xu MJ,Xu J

    更新日期:2018-09-21 00:00:00

  • The Fifth Annual Sc2.0 and Synthetic Genomes Conference: Synthetic Genomes in High Gear.

    abstract::The Sc2.0 project is perhaps the largest synthetic biology project in the public domain, and ultimately aims to construct a new version of the humble brewer's yeast, Saccharomyces cerevisiae. Each year, the Sc2.0 consortium gather to discuss progress in this ambitious project and highlight new developments at the fore...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章,评审

    doi:10.1021/acssynbio.6b00227

    authors: Walker RS,Cai Y

    更新日期:2016-09-16 00:00:00

  • Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    abstract::To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and Pg...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400194g

    authors: Kim YK,Kim YB,Uddin MR,Lee S,Kim SU,Park SU

    更新日期:2014-10-17 00:00:00

  • Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H2S as a Signaling Molecule for Quorum Sensing.

    abstract::Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS-, and S2-) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an au...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.9b00210

    authors: Liu H,Fan K,Li H,Wang Q,Yang Y,Li K,Xia Y,Xun L

    更新日期:2019-09-20 00:00:00

  • Genetically Encodable Bacterial Flavin Transferase for Fluorogenic Protein Modification in Mammalian Cells.

    abstract::A bacterial flavin transferase (ApbE) was recently employed for flavin mononucleotide (FMN) modification on the Na+-translocating NADH:quinone oxidoreductase C (NqrC) protein in the pathogenic Gram-negative bacterium Vibrio cholerae. We employed this unique post-translational modification in mammalian cells and found ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00284

    authors: Kang MG,Park J,Balboni G,Lim MH,Lee C,Rhee HW

    更新日期:2017-04-21 00:00:00

  • Microbial Synthesis of Human-Hormone Melatonin at Gram Scales.

    abstract::Melatonin is a commercially attractive tryptophan-derived hormone. Here we describe a bioprocess for the production of melatonin using Escherichia coli to high titers. The first engineered strain produced 0.13 g/L of melatonin from tryptophan under fed-batch fermentation conditions. A 4-fold improvement on melatonin t...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00065

    authors: Luo H,Schneider K,Christensen U,Lei Y,Herrgard M,Palsson BØ

    更新日期:2020-06-19 00:00:00

  • Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in Escherichia coli.

    abstract::The structural complexity of nonribosomal peptides (NRPs) impeding economic chemical synthesis and poor cultivability of source organisms limits the development of bioprocesses for novel bioactive compounds. Since nonribosomal peptide synthetases (NRPSs) assemble NRPs from simple amino acid building blocks, heterologo...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/sb400082j

    authors: Jaitzig J,Li J,Süssmuth RD,Neubauer P

    更新日期:2014-07-18 00:00:00

  • Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression.

    abstract::Cell-free gene expression systems are emerging as an important platform for a diverse range of synthetic biology and biotechnology applications, including production of robust field-ready biosensors. Here, we combine programmed cellular autolysis with a freeze-thaw or freeze-dry cycle to create a practical, reproducib...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00253

    authors: Didovyk A,Tonooka T,Tsimring L,Hasty J

    更新日期:2017-12-15 00:00:00

  • Single Day Construction of Multigene Circuits with 3G Assembly.

    abstract::The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems t...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00060

    authors: Halleran AD,Swaminathan A,Murray RM

    更新日期:2018-05-18 00:00:00

  • Resource Sharing Controls Gene Expression Bursting.

    abstract::Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00189

    authors: Caveney PM,Norred SE,Chin CW,Boreyko JB,Razooky BS,Retterer ST,Collier CP,Simpson ML

    更新日期:2017-02-17 00:00:00

  • Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch.

    abstract::To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Coloca...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.0c00012

    authors: Kirkpatrick RL,Lewis K,Langan RA,Lajoie MJ,Boyken SE,Eakman M,Baker D,Zalatan JG

    更新日期:2020-09-18 00:00:00

  • Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides.

    abstract::Multiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by traditional phosphoram...

    journal_title:ACS synthetic biology

    pub_type: 信件

    doi:10.1021/sb5001565

    authors: Bonde MT,Kosuri S,Genee HJ,Sarup-Lytzen K,Church GM,Sommer MO,Wang HH

    更新日期:2015-01-16 00:00:00

  • Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus.

    abstract::Actinomycetes are important organisms for the biosynthesis of valuable natural products. However, only a limited number of well-characterized native constitutive promoters from actinomycetes are available for the construction and engineering of large biochemical pathways. Here, we report the discovery and characteriza...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00016

    authors: Luo Y,Zhang L,Barton KW,Zhao H

    更新日期:2015-09-18 00:00:00

  • Probing Yeast Polarity with Acute, Reversible, Optogenetic Inhibition of Protein Function.

    abstract::We recently developed a technique for rapidly and reversibly inhibiting protein function through light-inducible sequestration of proteins away from their normal sites of action. Here, we adapt this method for inducible inactivation of Bem1, a scaffold protein involved in budding yeast polarity. We find that acute inh...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.5b00053

    authors: Jost AP,Weiner OD

    更新日期:2015-10-16 00:00:00

  • Reversing an Extracellular Electron Transfer Pathway for Electrode-Driven Acetoin Reduction.

    abstract::Microbial electrosynthesis is an emerging technology with the potential to simultaneously store renewably generated energy, fix carbon dioxide, and produce high-value organic compounds. However, limited understanding of the route of electrons into the cell remains an obstacle to developing a robust microbial electrosy...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00498

    authors: Tefft NM,TerAvest MA

    更新日期:2019-07-19 00:00:00

  • Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials.

    abstract::Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating ...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.8b00448

    authors: Charrier M,Li D,Mann VR,Yun L,Jani S,Rad B,Cohen BE,Ashby PD,Ryan KR,Ajo-Franklin CM

    更新日期:2019-01-18 00:00:00

  • Development of a Transcription Factor-Based Lactam Biosensor.

    abstract::Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoinformatic approach ins...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.6b00136

    authors: Zhang J,Barajas JF,Burdu M,Ruegg TL,Dias B,Keasling JD

    更新日期:2017-03-17 00:00:00

  • A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    abstract::Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome e...

    journal_title:ACS synthetic biology

    pub_type: 杂志文章

    doi:10.1021/acssynbio.7b00254

    authors: Bai H,Deng A,Liu S,Cui D,Qiu Q,Wang L,Yang Z,Wu J,Shang X,Zhang Y,Wen T

    更新日期:2018-01-19 00:00:00