Effectiveness of pedicle screw inclusion at the fracture level in short-segment fixation constructs for the treatment of thoracolumbar burst fractures: a computational biomechanics analysis.

Abstract:

:When treating thoracolumbar burst fractures (BF), short-segment posterior fixation (SSPF) represents a less invasive alternative to the traditional long-segment posterior fixation (LSPF) approach. However, hardware failure and loss of sagittal alignment have been reported in patients treated with SSPF. Including pedicle screws at the fracture level in SSPF constructs has been proposed to improve stiffness and reliability of the construct. Accordingly, the biomechanical performance of the proposed construct was compared to LSPF via a computational analysis. Pedicle screws at fracture level improved the performance of the short-segment construct. However, LSPF still represent a biomechanically superior option for treating thoracolumbar BF.

authors

Elmasry S,Asfour S,Travascio F

doi

10.1080/10255842.2017.1366995

subject

Has Abstract

pub_date

2017-10-01 00:00:00

pages

1412-1420

issue

13

eissn

1025-5842

issn

1476-8259

journal_volume

20

pub_type

杂志文章
  • Study of age-related changes in Middle ear transfer function.

    abstract::Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles de...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1632297

    authors: Zhou L,Shen N,Feng M,Liu H,Duan M,Huang X

    更新日期:2019-10-01 00:00:00

  • Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH.

    abstract::Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative mot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903064897

    authors: Zoghi-Moghadam M,Sadegh AM

    更新日期:2009-02-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • Biomechanical analysis of the anterior cervical fusion.

    abstract::This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.597351

    authors: Fernandes PC,Fernandes PR,Folgado JO,Levy Melancia J

    更新日期:2012-01-01 00:00:00

  • Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.

    abstract::This article is focused on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible, due to a lateral bite on the leftmost premolar. Based on experimental evidence, orthotropy of the elastic properties of the bone tissue has been adopted. The trajectories of anisotropic elastic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600661482

    authors: Kober C,Erdmann B,Hellmich C,Sader R,Zeilhofer HF

    更新日期:2006-04-01 00:00:00

  • A technical method using musculoskeletal model to analyse dynamic properties of muscles during human movement.

    abstract::An effective way to avoid invading or injuring the subjects is to use the musculoskeletal model when studying the dynamic properties of muscles in vivo. So, we put forward a joint coordinate system-based method, which mainly focuses on the coordinate's transformation of corresponding muscle attachment points, respecti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.493508

    authors: Tang G,Zhang XA,Zhang LL,Wang HS,Nie WZ,Wang CT

    更新日期:2011-07-01 00:00:00

  • Effect of lumbar fasciae on the stability of the lower lumbar spine.

    abstract::The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370459

    authors: Choi HW,Kim YE

    更新日期:2017-10-01 00:00:00

  • Development and validation of a finite element model of a small female pedestrian.

    abstract::Pedestrians are the most vulnerable road user and represent about 23% of the road traffic deaths in the world. A finite element (FE) model corresponding to a 5th percentile female pedestrian (F05-PS) was developed by morphing the Global Human Body Models Consortium (GHBMC) 50th percentile male pedestrian (M50-PS) mode...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1801652

    authors: Pak W,Meng Y,Schap J,Koya B,Gayzik FS,Untaroiu CD

    更新日期:2020-12-01 00:00:00

  • A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre.

    abstract::This paper introduces a 'hypothesis about the growth pattern of the secondary ossification centre (SOC)', whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular fac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.484810

    authors: Garzón-Alvarado DA,Peinado Cortés LM,Cárdenas Sandoval RP

    更新日期:2011-01-01 00:00:00

  • Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study.

    abstract::A novel, coarse-grained, single-framework 'Eulerian' model for blood flow in the microvascular circulation is presented and used to estimate the variations in flow properties that accrue from all of the following: (i) wall position variation, associated with the endothelial cells' (ECs) shape, (ii) glycocalyx layer (G...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.799146

    authors: Pontrelli G,Halliday I,Spencer TJ,König CS,Collins MW

    更新日期:2015-01-01 00:00:00

  • A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction.

    abstract::The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ord...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840008915267

    authors: Gielen AW,Oomens CW,Bovendeerd PH,Arts T,Janssen JD

    更新日期:2000-01-01 00:00:00

  • The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

    abstract::Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1777546

    authors: Watson PJ,Fagan MJ,Dobson CA

    更新日期:2020-10-01 00:00:00

  • Quantification of soft tissue balance in total knee arthroplasty using finite element analysis.

    abstract::Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be check...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.765409

    authors: Oh KJ,Park WM,Kim K,Kim YH

    更新日期:2014-01-01 00:00:00

  • Strategies towards rapid generation of forefoot model incorporating realistic geometry of metatarsals encapsulated into lumped soft tissues for personalized finite element analysis.

    abstract::Use of finite element (FE) foot model as a clinical diagnostics tool is likely to improve the specificity of foot injury predictions in the diabetic population. Here we proposed a novel workflow for rapid construction of foot FE model incorporating realistic geometry of metatarsals encapsulated into lumped forefoot's ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370458

    authors: Chen WM,Lee SJ,Lee PVS

    更新日期:2017-10-01 00:00:00

  • Identification and characterisation of regional variations in the material properties of ureter according to microstructure.

    abstract::There are few previous studies on the elastic properties of ureter and most have been limited to essentially one-dimensional deformation measurements. The object of this study was, therefore, to identify regional variations in the multiaxial behaviour of rabbit ureter, subjected to in vitro inflation/extension testing...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.761692

    authors: Sokolis DP

    更新日期:2014-11-01 00:00:00

  • Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms.

    abstract::Haemodynamics is believed to play an important role in the initiation, growth and rupture of intracranial aneurysms. In this context, computational haemodynamics has been extensively used in an effort to establish correlations between flow variables and clinical outcome. It is common practice in the application of Dir...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802654335

    authors: Marzo A,Singh P,Reymond P,Stergiopulos N,Patel U,Hose R

    更新日期:2009-08-01 00:00:00

  • Spiral blood flow in aorta-renal bifurcation models.

    abstract::The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-re...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1082552

    authors: Javadzadegan A,Simmons A,Barber T

    更新日期:2016-01-01 00:00:00

  • In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices.

    abstract::When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the ski...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1655549

    authors: Barrios-Muriel J,Romero Sánchez F,Alonso Sánchez FJ,Rodríguez Salgado D

    更新日期:2019-11-01 00:00:00

  • Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.

    abstract::The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gy...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1569638

    authors: Castro APG,Ruben RB,Gonçalves SB,Pinheiro J,Guedes JM,Fernandes PR

    更新日期:2019-05-01 00:00:00

  • The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis.

    abstract::Transcatheter aortic valve replacement (TAVR) strongly depends on the calcification patterns, which may lead to a malapposition of the stented valve and complication onsets in terms of structure kinematics and paravalvular leakage (PVL). From one anatomical-resembling model of the aortic root, six configurations with ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817409

    authors: Luraghi G,Matas JFR,Beretta M,Chiozzi N,Iannetti L,Migliavacca F

    更新日期:2020-09-14 00:00:00

  • Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    abstract::In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary condit...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.497490

    authors: Dinarvand S

    更新日期:2011-10-01 00:00:00

  • Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    abstract::Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consist...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.887698

    authors: Caballero AD,Laín S

    更新日期:2015-08-01 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Feature selection based on a fuzzy complementary criterion: application to gait recognition using ground reaction forces.

    abstract::An efficient wavelet-based feature selection (FS) method is proposed in this paper for subject recognition using ground reaction force measurements. Our approach relies on a local fuzzy evaluation measure with respect to patterns that reveal the adequacy of data coverage for each feature. Furthermore, FS is driven by ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554408

    authors: Moustakidis SP,Theocharis JB,Giakas G

    更新日期:2012-01-01 00:00:00

  • Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures.

    abstract::The aim of this study is to evaluate the fracture union or non-union for a specific patient that presented oblique fractures in tibia and fibula, using a mechanistic-based bone healing model. Normally, this kind of fractures can be treated through an intramedullary nail using two possible configurations that depends o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1125473

    authors: Alierta JA,Pérez MA,Seral B,García-Aznar JM

    更新日期:2016-09-01 00:00:00

  • Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance.

    abstract::In some cases of aortic valve leaflet disease, the implant of a stentless biological prosthesis represents an excellent option for aortic valve replacement (AVR). In particular, if compared with the implant of mechanical valves, it provides a more physiological haemodynamic performance and a reduced thrombogeneticity,...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.681645

    authors: Auricchio F,Conti M,Ferrara A,Morganti S,Reali A

    更新日期:2014-01-01 00:00:00

  • A computational study of systemic hydration in vocal fold collision.

    abstract::Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realis...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.772591

    authors: Bhattacharya P,Siegmund T

    更新日期:2014-01-01 00:00:00

  • Performance criteria for generating predictive optimal control simulations of bicycle pedaling.

    abstract::The purpose of this study was to identify one or more performance-based criteria that may be used to generate predictive optimal control simulations of submaximal pedaling. Two-legged pedaling simulations were generated based on minimizing muscle activation, muscle stress, metabolic energy, time derivative of muscle f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1522535

    authors: Gidley AD,Marsh AP,Umberger BR

    更新日期:2019-01-01 00:00:00

  • Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study.

    abstract::In order to improve the reliability of children's models, the aim of this study was to determine the subject-specific masses and 3D locations of the centres of mass (CoM) of body segments using biplanar X-rays. Previous methods, validated on upper leg segments, were applied to the whole body. Six children and six adul...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255841003717608

    authors: Sandoz B,Laporte S,Skalli W,Mitton D

    更新日期:2010-12-01 00:00:00

  • The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.

    abstract::The mechanical properties of soft biological tissues in general and early stage engineered tissues in particular limit the feasibility of conventional tensile tests for their mechanical characterisation. Furthermore, the most important mode in development of deep tissue injury (DTI) is compression. Therefore, an inver...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701771768

    authors: Cox MA,Gawlitta D,Driessen NJ,Oomens CW,Baaijens FP

    更新日期:2008-10-01 00:00:00