Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability.

Abstract:

:Cells carrying deletions of genes encoding H-class ribonucleases display elevated rates of chromosome instability. The role of these enzymes is to remove RNA-DNA associations including persistent mRNA-DNA hybrids (R-loops) formed during transcription, and ribonucleotides incorporated into DNA during replication. RNases H1 and H2 can degrade the RNA component of R-loops, but only RNase H2 can initiate accurate ribonucleotide excision repair (RER). In order to examine the specific contributions of these activities to chromosome stability, we measured rates of loss-of-heterozygosity (LOH) in diploid Saccharomyces cerevisiae yeast strains carrying the rnh201-RED separation-of-function allele, encoding a version of RNase H2 that is RER-defective, but partly retains its other activity. The LOH rate in rnh201-RED was intermediate between RNH201 and rnh201Δ. In strains carrying a mutant version of DNA polymerase ε (pol2-M644G) that incorporates more ribonucleotides than normal, the LOH rate in rnh201-RED was as high as the rate measured in rnh201Δ. Topoisomerase 1 cleavage at sites of ribonucleotide incorporation has been recently shown to produce DNA double strand breaks. Accordingly, in both the POL2 and pol2-M644G backgrounds, the LOH elevation in rnh201-RED was suppressed by top1Δ. In contrast, in strains that incorporate fewer ribonucleotides (pol2-M644L) the LOH rate in rnh201-RED was low and independent of topoisomerase 1. These results suggest that both R-loop removal and RER contribute substantially to chromosome stability, and that their relative contributions may be variable across different regions of the genome. In this scenario, a prominent contribution of R-loop removal may be expected at highly transcribed regions, whereas RER may play a greater role at hotspots of ribonucleotide incorporation.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Cornelio DA,Sedam HN,Ferrarezi JA,Sampaio NM,Argueso JL

doi

10.1016/j.dnarep.2017.02.012

subject

Has Abstract

pub_date

2017-04-01 00:00:00

pages

110-114

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(16)30422-0

journal_volume

52

pub_type

杂志文章
  • Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase beta.

    abstract::Several types of DNA lesion are induced after ionizing irradiation (IR) of which double strand breaks (DSBs) are expected to be the most lethal, although single strand breaks (SSBs) and DNA base damages are quantitatively in the majority. Proteins of the base excision repair (BER) pathway repair these numerous lesions...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.11.008

    authors: Neijenhuis S,Verwijs-Janssen M,Kasten-Pisula U,Rumping G,Borgmann K,Dikomey E,Begg AC,Vens C

    更新日期:2009-03-01 00:00:00

  • Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair.

    abstract::Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recogniti...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103024

    authors: Kraithong T,Sucharitakul J,Buranachai C,Jeruzalmi D,Chaiyen P,Pakotiprapha D

    更新日期:2021-01-01 00:00:00

  • The splicing component ISY1 regulates APE1 in base excision repair.

    abstract::The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the remov...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102769

    authors: Jaiswal AS,Williamson EA,Srinivasan G,Kong K,Lomelino CL,McKenna R,Walter C,Sung P,Narayan S,Hromas R

    更新日期:2020-02-01 00:00:00

  • TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts.

    abstract::3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision r...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.11.004

    authors: Kucab JE,Zwart EP,van Steeg H,Luijten M,Schmeiser HH,Phillips DH,Arlt VM

    更新日期:2016-03-01 00:00:00

  • Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa.

    abstract::Interaction between MutS and the replication factor β clamp has been extensively studied in a Mismatch Repair context; however, its functional consequences are not well understood. We have analyzed the role of the MutS-β clamp interaction in Pseudomonas aeruginosa by characterizing a β clamp binding motif mutant, deno...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.01.015

    authors: Monti MR,Miguel V,Borgogno MV,Argaraña CE

    更新日期:2012-05-01 00:00:00

  • A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

    abstract::Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.01.015

    authors: Georgescu R,Langston L,O'Donnell M

    更新日期:2015-05-01 00:00:00

  • Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities.

    abstract::Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.07.002

    authors: Vik ES,Alseth I,Forsbring M,Helle IH,Morland I,Luna L,Bjørås M,Dalhus B

    更新日期:2012-09-01 00:00:00

  • Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair.

    abstract::Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.06.006

    authors: German P,Szaniszlo P,Hajas G,Radak Z,Bacsi A,Hazra TK,Hegde ML,Ba X,Boldogh I

    更新日期:2013-10-01 00:00:00

  • The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs.

    abstract::The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosph...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.09.008

    authors: Lebedeva NA,Rechkunova NI,Ishchenko AA,Saparbaev M,Lavrik OI

    更新日期:2013-12-01 00:00:00

  • Stopped in its tracks: the RNA polymerase molecular motor as a robust sensor of DNA damage.

    abstract::DNA repair is often a complex, multi-component, multi-step process; this makes detailed kinetic analysis of the different steps of repair a challenging task using standard biochemical methods. At the same time, single-molecule methods are well-suited for extracting kinetic information despite time-averaging due to dif...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.02.018

    authors: Howan K,Monnet J,Fan J,Strick TR

    更新日期:2014-08-01 00:00:00

  • Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans.

    abstract::The RecQ family of DNA helicases performs essential functions in the maintenance of genomic stability in all organisms. In Deinococcus radiodurans, DR1289 is a special member of RecQ family with unique arrangement of three tandem HRDC domains in the C-terminus. A dr1289 mutant is hypersensitive to gamma-irradiation, U...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.09.006

    authors: Huang L,Hua X,Lu H,Gao G,Tian B,Shen B,Hua Y

    更新日期:2007-02-04 00:00:00

  • Determinants of sequence-specificity within human AID and APOBEC3G.

    abstract::Human APOBEC3G (A3G) and activation-induced deaminase (AID) belong to a family of DNA-cytosine deaminases. While A3G targets the last C in a run of C's, AID targets C in the consensus sequence WRC (W is A or T and R is a purine). Guided by the structures of the A3G carboxyl-terminal catalytic domain (A3G-CTD), we iden...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.02.010

    authors: Carpenter MA,Rajagurubandara E,Wijesinghe P,Bhagwat AS

    更新日期:2010-05-04 00:00:00

  • Validation of XP-C pathogenic variations in archival material from a live XP patient.

    abstract::Xeroderma pigmentosum (XP) genetic complementation group C (XP-C) is the most common form of the disease worldwide. Thirty-four distinct genetic defects have been identified in 45 XP-C patients. Further identification of such defects and the frequency of their occurrence offers the potential of generating diagnostic a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.09.009

    authors: McDaniel LD,Rivera-Begeman A,Doughty AT,Schultz RA,Friedberg EC

    更新日期:2007-01-04 00:00:00

  • RAD51D protects against MLH1-dependent cytotoxic responses to O(6)-methylguanine.

    abstract::S(N)1-type methylating agents generate O(6)-methyl guanine (O(6)-meG), which is a potently mutagenic, toxic, and recombinogenic DNA adduct. Recognition of O(6)-meG:T mismatches by mismatch repair (MMR) causes sister chromatid exchanges, which are representative of homologous recombination (HR) events. Although the MMR...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.01.009

    authors: Rajesh P,Rajesh C,Wyatt MD,Pittman DL

    更新日期:2010-04-04 00:00:00

  • xni-deficient Escherichia coli are proficient for recombination and multiple pathways of repair.

    abstract::Single-strand-dependent DNA exonucleases play important roles in DNA repair and recombination in all organisms. In Escherichia coli the redundant functions provided by the RecJ, ExoI, ExoVII and ExoX exonucleases are required for mismatch repair, UV resistance and homologous recombination. We have examined whether the...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00135-6

    authors: Lombardo MJ,Aponyi I,Ray MP,Sandigursky M,Franklin WA,Rosenberg SM

    更新日期:2003-11-21 00:00:00

  • MDC1 is ubiquitylated on its tandem BRCT domain and directly binds RAP80 in a UBC13-dependent manner.

    abstract::The cellular response to DNA damage is essential for maintenance of genomic stability. MDC1 is a key member of the DNA damage response. It is an adaptor protein that binds and recruits proteins to sites of DNA damage, a crucial step for a proper response. MDC1 contains several protein-protein interacting modules, incl...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.04.016

    authors: Strauss C,Halevy T,Macarov M,Argaman L,Goldberg M

    更新日期:2011-08-15 00:00:00

  • Pyrosequencing for the quantitative assessment of 8-oxodG bypass DNA synthesis.

    abstract::Translesion synthesis (TLS) with specialized DNA polymerases allows dealing with a base lesion on the template strand during DNA replication; a base is inserted opposite the lesion, correctly or incorrectly, depending on the lesion, the involved DNA polymerase(s) and the sequence context. The major oxidized DNA base 8...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.08.002

    authors: Nachtergael A,Belayew A,Duez P

    更新日期:2014-10-01 00:00:00

  • A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation.

    abstract::Both UVB radiation and DNA-breaking agents were previously reported to kill Arabidopsis stem cells. We demonstrate that death induced by UVB or by ionizing radiation (IR) requires Suppressor of Gamma Response 1 (SOG1), a transcription factor already found to govern many responses to these agents in Arabidopsis. DNA-da...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.06.006

    authors: Furukawa T,Curtis MJ,Tominey CM,Duong YH,Wilcox BW,Aggoune D,Hays JB,Britt AB

    更新日期:2010-09-04 00:00:00

  • Developmental retinal apoptosis in Ku86-/- mice.

    abstract::The nonhomologous DNA end-joining pathway (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs), is essential for maintaining genomic stability. Knockout animals for components in this pathway demonstrate a distinct pattern of cell death in the developing brain. Here we demonstrate that cell death is a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.08.011

    authors: Karanjawala ZE,Hinton DR,Oh E,Hsieh CL,Lieber MR

    更新日期:2003-12-09 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair.

    abstract::The Tousled-like kinases are involved in chromatin assembly, DNA repair, transcription, and chromosome segregation. In this work, we show that overexpression of TLK1B hastens repair of double strand breaks (DSBs) in mouse cells. We have identified Rad9 as a protein interacting tightly with TLK1B. TLK1B phosphorylates ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.09.005

    authors: Sunavala-Dossabhoy G,De Benedetti A

    更新日期:2009-01-01 00:00:00

  • Absence of DNA polymerase theta results in decreased somatic hypermutation frequency and altered mutation patterns in Ig genes.

    abstract::Multiple DNA polymerases participate in somatic hypermutation of immunoglobulin (Ig) genes. Mutations at A/T are largely dependent on DNA polymerase eta (POLH) whereas mutations at C/G appear to be generated by several DNA polymerases. We have previously shown that mice expressing a catalytically inactive POLQ (Polq-i...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.06.006

    authors: Masuda K,Ouchida R,Hikida M,Nakayama M,Ohara O,Kurosaki T,O-Wang J

    更新日期:2006-11-08 00:00:00

  • The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression.

    abstract::The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103036

    authors: Malakoti F,Alemi F,Younesi S,Majidinia M,Yousefi B,Morovat P,Khelghati N,Maleki M,Karimian A,Asemi Z

    更新日期:2021-01-07 00:00:00

  • Functions that protect Escherichia coli from DNA-protein crosslinks.

    abstract::Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.01.016

    authors: Krasich R,Wu SY,Kuo HK,Kreuzer KN

    更新日期:2015-04-01 00:00:00

  • The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast.

    abstract::Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same pr...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.05.005

    authors: Li S,Ding B,LeJeune D,Ruggiero C,Chen X,Smerdon MJ

    更新日期:2007-11-01 00:00:00

  • Function and biochemical characterization of RecJ in Deinococcus radiodurans.

    abstract::The single-stranded DNA-specific nuclease RecJ is found in most bacteria where it is involved in the RecFOR double-stranded break (DSBs) repair pathway. DSBs repair mainly occurs via the RecFOR pathway in Deinococcus radiodurans, a well-known radiation-resistant bacterium. A recJ null mutant was constructed to investi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.11.008

    authors: Jiao J,Wang L,Xia W,Li M,Sun H,Xu G,Tian B,Hua Y

    更新日期:2012-04-01 00:00:00

  • Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair.

    abstract::Neuronal protection induced by ischemic preconditioning has an important role in the reduction of stroke volume and attenuation of neuronal cell death. Ischemic injury is associated with increased oxidative DNA damage, and failure to efficiently repair these oxidatively damaged lesions results in the accumulation of m...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.02.027

    authors: Li N,Wu H,Yang S,Chen D

    更新日期:2007-09-01 00:00:00

  • Repair of UV lesions in nucleosomes--intrinsic properties and remodeling.

    abstract::Nucleotide excision repair and reversal of pyrimidine dimers by photolyase (photoreactivation) are two major pathways to remove UV-lesions from DNA. Here, it is discussed how lesions are recognized and removed when the DNA is condensed into nucleosomes. During the recent years it was shown that nucleosomes inhibit pho...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2005.04.005

    authors: Thoma F

    更新日期:2005-07-28 00:00:00

  • Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway.

    abstract::The Fanconi Anemia (FA) pathway encodes a DNA damage response activated by DNA damage-stalled replication forks. Current evidence suggests that the FA pathway initiates with DNA damage recognition by the FANCM complex (FANCM/FAAP24/MHF). However, genetic inactivation of FANCM in mouse and DT40 cells causes only a part...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.09.006

    authors: Huang M,Kennedy R,Ali AM,Moreau LA,Meetei AR,D'Andrea AD,Chen CC

    更新日期:2011-12-10 00:00:00

  • Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells.

    abstract::Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid f...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.004

    authors: Gao Q,Reynolds GE,Wilcox A,Miller D,Cheung P,Artandi SE,Murnane JP

    更新日期:2008-08-02 00:00:00