xni-deficient Escherichia coli are proficient for recombination and multiple pathways of repair.

Abstract:

:Single-strand-dependent DNA exonucleases play important roles in DNA repair and recombination in all organisms. In Escherichia coli the redundant functions provided by the RecJ, ExoI, ExoVII and ExoX exonucleases are required for mismatch repair, UV resistance and homologous recombination. We have examined whether the xni gene product, the single-strand exonuclease ExoIX, is also a member of this group. We find that deletion of xni has no effect on the above processes, or on resistance to oxidative damage, even in combination with other exonuclease mutations. We conclude that the xni gene product does not belong to this group of nucleases that play redundant roles in DNA recombination and repair.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Lombardo MJ,Aponyi I,Ray MP,Sandigursky M,Franklin WA,Rosenberg SM

doi

10.1016/s1568-7864(03)00135-6

keywords:

subject

Has Abstract

pub_date

2003-11-21 00:00:00

pages

1175-83

issue

11

eissn

1568-7864

issn

1568-7856

pii

S1568786403001356

journal_volume

2

pub_type

杂志文章
  • Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses.

    abstract::Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or we...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2016.06.002

    authors: Suzuki T,Grúz P,Honma M,Adachi N,Nohmi T

    更新日期:2016-09-01 00:00:00

  • How to fix DNA-protein crosslinks.

    abstract::Proteins that act on DNA, or are in close proximity to it, can become inadvertently crosslinked to DNA and form highly toxic lesions, known as DNA-protein crosslinks (DPCs). DPCs are generated by different chemotherapeutics, environmental or endogenous sources of crosslinking agents, or by lesions on DNA that stall th...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102924

    authors: Kühbacher U,Duxin JP

    更新日期:2020-10-01 00:00:00

  • Absence of DNA polymerase theta results in decreased somatic hypermutation frequency and altered mutation patterns in Ig genes.

    abstract::Multiple DNA polymerases participate in somatic hypermutation of immunoglobulin (Ig) genes. Mutations at A/T are largely dependent on DNA polymerase eta (POLH) whereas mutations at C/G appear to be generated by several DNA polymerases. We have previously shown that mice expressing a catalytically inactive POLQ (Polq-i...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.06.006

    authors: Masuda K,Ouchida R,Hikida M,Nakayama M,Ohara O,Kurosaki T,O-Wang J

    更新日期:2006-11-08 00:00:00

  • Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway.

    abstract::The Fanconi Anemia (FA) pathway encodes a DNA damage response activated by DNA damage-stalled replication forks. Current evidence suggests that the FA pathway initiates with DNA damage recognition by the FANCM complex (FANCM/FAAP24/MHF). However, genetic inactivation of FANCM in mouse and DT40 cells causes only a part...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.09.006

    authors: Huang M,Kennedy R,Ali AM,Moreau LA,Meetei AR,D'Andrea AD,Chen CC

    更新日期:2011-12-10 00:00:00

  • Preserving replication fork integrity and competence via the homologous recombination pathway.

    abstract::Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase co...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2018.08.017

    authors: Ait Saada A,Lambert SAE,Carr AM

    更新日期:2018-11-01 00:00:00

  • Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research.

    abstract::Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.03.009

    authors: Nagel ZD,Chaim IA,Samson LD

    更新日期:2014-07-01 00:00:00

  • DNA mismatch repair mediates protection from mutagenesis induced by short-wave ultraviolet light.

    abstract::To investigate involvement of DNA mismatch repair in the response to short-wave ultraviolet (UVC) light, we compared UVC-induced mutant frequencies and mutational spectra at the Hprt gene between wild type and mismatch-repair-deficient mouse embryonic stem (ES) cells. Whereas mismatch repair gene status did not signif...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.06.005

    authors: Borgdorff V,Pauw B,van Hees-Stuivenberg S,de Wind N

    更新日期:2006-11-08 00:00:00

  • Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA.

    abstract::Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity,...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.06.014

    authors: Vázquez MV,Rojas V,Tercero JA

    更新日期:2008-10-01 00:00:00

  • The hidden side of unstable DNA repeats: Mutagenesis at a distance.

    abstract::Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also caus...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.020

    authors: Shah KA,Mirkin SM

    更新日期:2015-08-01 00:00:00

  • Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks.

    abstract::The hereditary breast and ovarian cancer predisposition genes, BRCA1 and BRCA2, participate in the repair of DNA double strand breaks by homologous recombination. Circumstantial evidence implicates these genes in recombinational responses to DNA polymerase stalling during the S phase of the cell cycle. These responses...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2007.02.020

    authors: Nagaraju G,Scully R

    更新日期:2007-07-01 00:00:00

  • Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.

    abstract::Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.01.001

    authors: Jin J,Hwang BJ,Chang PW,Toth EA,Lu AL

    更新日期:2014-03-01 00:00:00

  • DNA mismatch repair preferentially safeguards actively transcribed genes.

    abstract::DNA mismatch repair (MMR) is an evolutionally conserved genome maintenance pathway and is well known for its role in maintaining replication fidelity by correcting biosynthetic errors generated during DNA replication. However, recent studies have shown that MMR preferentially protects actively transcribed genes from m...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2018.08.010

    authors: Huang Y,Li GM

    更新日期:2018-11-01 00:00:00

  • SSB recruitment of Exonuclease I aborts template-switching in Escherichia coli.

    abstract::Misalignment of a nascent strand and the use of an alternative template during DNA replication, a process termed "template-switching", can give rise to frequent mutations and genetic rearrangements. Mutational hotspots are frequently found associated with imperfect inverted repeats ("quasipalindromes" or "QPs") in man...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.05.007

    authors: Laranjo LT,Gross SJ,Zeiger DM,Lovett ST

    更新日期:2017-09-01 00:00:00

  • Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase.

    abstract::The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.04.002

    authors: Ganesan AK,Smith AJ,Savery NJ,Zamos P,Hanawalt PC

    更新日期:2007-10-01 00:00:00

  • Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.

    abstract::Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized st...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2016.03.002

    authors: Viterbo D,Michoud G,Mosbach V,Dujon B,Richard GF

    更新日期:2016-06-01 00:00:00

  • The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes.

    abstract::AA8 Chinese hamster ovary cells were treated with halogenated nucleosides analogues of thymidine, namely CldU, 5-iodo-2'-deoxyuridine (IdU), and 5-bromo-2'-deoxyuridine (BrdU), following different experimental protocols. The purpose was to see whether incorporation of exogenous pyrimidine analogues into DNA could inte...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00044-2

    authors: Cortés F,Pastor N,Mateos S,Domínguez I

    更新日期:2003-06-11 00:00:00

  • A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.

    abstract::Quantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs). Following imaging, multiple (32)P-bands are often present in lanes. Though individual bands appear by eye to be simple and well-resolved, scanning reveals they are actually skewed-Gaussia...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.10.001

    authors: Sholder G,Loechler EL

    更新日期:2015-01-01 00:00:00

  • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    abstract::In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.03.009

    authors: Lingaraju GM,Prota AE,Winkler FK

    更新日期:2009-07-04 00:00:00

  • Arsenic-induced Mre11 phosphorylation is cell cycle-dependent and defective in NBS cells.

    abstract::Cancer-prone diseases ataxia-telangiectasia (AT), Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD) are defective in the repair of DNA double-stranded break (DSB). On the other hand, arsenic (As) has been reported to cause DSB and to be involved in the occurrence of skin, lung and bladder...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(01)00009-x

    authors: Yuan SS,Su JH,Hou MF,Yang FW,Zhao S,Lee EY

    更新日期:2002-02-28 00:00:00

  • Developmental retinal apoptosis in Ku86-/- mice.

    abstract::The nonhomologous DNA end-joining pathway (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs), is essential for maintaining genomic stability. Knockout animals for components in this pathway demonstrate a distinct pattern of cell death in the developing brain. Here we demonstrate that cell death is a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.08.011

    authors: Karanjawala ZE,Hinton DR,Oh E,Hsieh CL,Lieber MR

    更新日期:2003-12-09 00:00:00

  • Mutations, protein homeostasis, and epigenetic control of genome integrity.

    abstract::From bacteria to humans, ancient stress responses enable organisms to contend with damage to both the genome and the proteome. These pathways have long been viewed as fundamentally separate responses. Yet recent discoveries from multiple fields have revealed surprising links between the two. Many DNA-damaging agents a...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2018.08.004

    authors: Xie JL,Jarosz DF

    更新日期:2018-11-01 00:00:00

  • The role of DNA repair in brain related disease pathology.

    abstract::Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2013.04.010

    authors: Canugovi C,Misiak M,Ferrarelli LK,Croteau DL,Bohr VA

    更新日期:2013-08-01 00:00:00

  • Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.

    abstract::If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is respon...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.010

    authors: Bilotti K,Kennedy EE,Li C,Delaney S

    更新日期:2017-11-01 00:00:00

  • Structural and functional studies of MutS2 from Deinococcus radiodurans.

    abstract::The MutS2 homologues have been found widespread in most prokaryotes, which are involved in DNA repair and reactive oxygen species detoxification. The C-terminal small mutS-related (Smr) domain is critical for its endonucleolytic activity. However, the detailed catalytic mechanism is still unclear. In this study, we fi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.04.012

    authors: Zhang H,Xu Q,Lu M,Xu X,Wang Y,Wang L,Zhao Y,Hua Y

    更新日期:2014-09-01 00:00:00

  • Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity.

    abstract::Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadm...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.005

    authors: Serero A,Lopes J,Nicolas A,Boiteux S

    更新日期:2008-08-02 00:00:00

  • Functions that protect Escherichia coli from DNA-protein crosslinks.

    abstract::Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.01.016

    authors: Krasich R,Wu SY,Kuo HK,Kreuzer KN

    更新日期:2015-04-01 00:00:00

  • DNA damage in blood cells in relation to chemotherapy and nutritional status in colorectal cancer patients-A pilot study.

    abstract::DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explo...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2018.01.005

    authors: Kværner AS,Minaguchi J,Yamani NE,Henriksen C,Ræder H,Paur I,Henriksen HB,Wiedswang G,Smeland S,Blomhoff R,Collins AR,Bøhn SK

    更新日期:2018-03-01 00:00:00

  • HPV induction of APOBEC3 enzymes mediate overall survival and response to cisplatin in head and neck cancer.

    abstract::Human papillomavirus (HPV) is associated with the development of head and neck squamous cell carcinomas (HNSC). Cisplatin is used to treat HNSC and induces DNA adducts including interstrand crosslinks (ICLs). Previous reports have shown that HPV positive HNSC patients respond better to cisplatin therapy. Our previous ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102802

    authors: Conner KL,Shaik AN,Ekinci E,Kim S,Ruterbusch JJ,Cote ML,Patrick SM

    更新日期:2020-03-01 00:00:00

  • RAD51D protects against MLH1-dependent cytotoxic responses to O(6)-methylguanine.

    abstract::S(N)1-type methylating agents generate O(6)-methyl guanine (O(6)-meG), which is a potently mutagenic, toxic, and recombinogenic DNA adduct. Recognition of O(6)-meG:T mismatches by mismatch repair (MMR) causes sister chromatid exchanges, which are representative of homologous recombination (HR) events. Although the MMR...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.01.009

    authors: Rajesh P,Rajesh C,Wyatt MD,Pittman DL

    更新日期:2010-04-04 00:00:00

  • Dysfunctional mammalian telomeres join with DNA double-strand breaks.

    abstract::In addition to joining broken DNA strands, several non-homologous end-joining (NHEJ) proteins have a second seemingly antithetical role in constructing functional telomeres, the nucleoprotein structures at the termini of linear eukaryotic chromosomes that prevent joining between natural chromosome ends. Although NHEJ ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.11.007

    authors: Bailey SM,Cornforth MN,Ullrich RL,Goodwin EH

    更新日期:2004-04-01 00:00:00