DNA damage in blood cells in relation to chemotherapy and nutritional status in colorectal cancer patients-A pilot study.

Abstract:

:DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explore associations with chemotherapy treatment and nutritional status. DNA damage was compared between patients receiving chemotherapy (n = 24) and those not receiving chemotherapy (n = 20). DNA damage was measured in frozen whole blood by the comet assay. Associations between DNA damage and various indicators of malnutrition were also explored, including Patient-Generated Subjective Global Assessment (PG-SGA), bioelectrical impedance analysis (BIA) and anthropometric measurements, using multiple linear regression models. Patients on chemotherapy have higher levels of DNA damage in blood cells than patients not receiving chemotherapy (median of 16.9 and 7.9% tail DNA respectively, p = 0.001). The moderately malnourished patients (PG-SGA category B), representing 41% of the patients, have higher levels of cellular DNA damage than patients with good nutritional status (mean difference of 7.5% tail DNA, p = 0.033). In conclusion, adjuvant chemotherapy and malnutrition are both associated with increased levels of DNA damage in blood cells of CRC patients. Carefully controlled longitudinal studies or randomized controlled trials should be performed to determine whether good nutritional status may protect against chemotherapy-induced genotoxicity and enhance compliance to therapy in CRC patients.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Kværner AS,Minaguchi J,Yamani NE,Henriksen C,Ræder H,Paur I,Henriksen HB,Wiedswang G,Smeland S,Blomhoff R,Collins AR,Bøhn SK

doi

10.1016/j.dnarep.2018.01.005

subject

Has Abstract

pub_date

2018-03-01 00:00:00

pages

16-24

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(17)30375-0

journal_volume

63

pub_type

杂志文章
  • Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage.

    abstract::We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00108-8

    authors: Fukumoto Y,Hiyama H,Yokoi M,Nakaseko Y,Yanagida M,Hanaoka F

    更新日期:2002-10-01 00:00:00

  • RNA-directed repair of DNA double-strand breaks.

    abstract::DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.017

    authors: Yang YG,Qi Y

    更新日期:2015-08-01 00:00:00

  • APE1: A skilled nucleic acid surgeon.

    abstract::Before a deleterious DNA lesion can be replaced with its undamaged counterpart, the lesion must first be removed from the genome. This process of removing and replacing DNA lesions is accomplished by the careful coordination of several protein factors during DNA repair. One such factor is the multifunctional enzyme hu...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2018.08.012

    authors: Whitaker AM,Freudenthal BD

    更新日期:2018-11-01 00:00:00

  • Poetry in motion: Increased chromosomal mobility after DNA damage.

    abstract::Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical s...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.012

    authors: Smith MJ,Rothstein R

    更新日期:2017-08-01 00:00:00

  • An improved method for the detection of nucleotide excision repair factors at local UV DNA damage sites.

    abstract::Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclea...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.01.005

    authors: Dutto I,Cazzalini O,Stivala LA,Prosperi E

    更新日期:2017-03-01 00:00:00

  • Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities.

    abstract::Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.07.002

    authors: Vik ES,Alseth I,Forsbring M,Helle IH,Morland I,Luna L,Bjørås M,Dalhus B

    更新日期:2012-09-01 00:00:00

  • Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress.

    abstract::XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa(-/-) and Xpc(-/-) exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.019

    authors: Melis JP,Kuiper RV,Zwart E,Robinson J,Pennings JL,van Oostrom CT,Luijten M,van Steeg H

    更新日期:2013-12-01 00:00:00

  • A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

    abstract::Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.01.015

    authors: Georgescu R,Langston L,O'Donnell M

    更新日期:2015-05-01 00:00:00

  • 53BP1, an activator of ATM in response to DNA damage.

    abstract::p53 Binding protein 1 (53BP1) belongs to a family of evolutionarily conserved DNA damage checkpoint proteins with C-terminal BRCT domains and is most likely the human ortholog of the budding yeast Rad9 protein, the first cell cycle checkpoint protein to be described. 53BP1 localizes rapidly to sites of DNA double stra...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.03.017

    authors: Mochan TA,Venere M,DiTullio RA Jr,Halazonetis TD

    更新日期:2004-08-01 00:00:00

  • REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast.

    abstract::The DNA polymerase beta (Pol beta) null background renders mouse embryonic fibroblast (MEF) cells base excision repair deficient and hyper-mutagenic upon treatment with the monofunctional alkylating agent, methyl methanesulfonate (MMS). This effect involves an increase in all types of base substitutions, with a modest...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.05.002

    authors: Poltoratsky V,Horton JK,Prasad R,Wilson SH

    更新日期:2005-09-28 00:00:00

  • RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.

    abstract::RAre DAmage and Repair sequencing (RADAR-seq) is a highly adaptable sequencing method that enables the identification and detection of rare DNA damage events for a wide variety of DNA lesions at single-molecule resolution on a genome-wide scale. In RADAR-seq, DNA lesions are replaced with a patch of modified bases tha...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.06.007

    authors: Zatopek KM,Potapov V,Maduzia LL,Alpaslan E,Chen L,Evans TC Jr,Ong JL,Ettwiller LM,Gardner AF

    更新日期:2019-08-01 00:00:00

  • The involvement of non-B DNA structures in gross chromosomal rearrangements.

    abstract::Non-B DNA conformations adopted by certain types of DNA sequences promote genetic instabilities, especially gross rearrangements including translocations. We conclude the following: (a) slipped (hairpin) structures, cruciforms, triplexes, tetraplexes and i-motifs, and left-handed Z-DNA are formed in chromosomes and el...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2006.05.032

    authors: Bacolla A,Wojciechowska M,Kosmider B,Larson JE,Wells RD

    更新日期:2006-09-08 00:00:00

  • A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation.

    abstract::Both UVB radiation and DNA-breaking agents were previously reported to kill Arabidopsis stem cells. We demonstrate that death induced by UVB or by ionizing radiation (IR) requires Suppressor of Gamma Response 1 (SOG1), a transcription factor already found to govern many responses to these agents in Arabidopsis. DNA-da...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.06.006

    authors: Furukawa T,Curtis MJ,Tominey CM,Duong YH,Wilcox BW,Aggoune D,Hays JB,Britt AB

    更新日期:2010-09-04 00:00:00

  • Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence.

    abstract::Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2018.11.010

    authors: Burra S,Marasco D,Malfatti MC,Antoniali G,Virgilio A,Esposito V,Demple B,Galeone A,Tell G

    更新日期:2019-01-01 00:00:00

  • Developmental retinal apoptosis in Ku86-/- mice.

    abstract::The nonhomologous DNA end-joining pathway (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs), is essential for maintaining genomic stability. Knockout animals for components in this pathway demonstrate a distinct pattern of cell death in the developing brain. Here we demonstrate that cell death is a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.08.011

    authors: Karanjawala ZE,Hinton DR,Oh E,Hsieh CL,Lieber MR

    更新日期:2003-12-09 00:00:00

  • DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells.

    abstract::DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL r...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.09.010

    authors: Vare D,Groth P,Carlsson R,Johansson F,Erixon K,Jenssen D

    更新日期:2012-12-01 00:00:00

  • Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia.

    abstract::Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.11.002

    authors: Sharma NK,Lebedeva M,Thomas T,Kovalenko OA,Stumpf JD,Shadel GS,Santos JH

    更新日期:2014-01-01 00:00:00

  • Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

    abstract::An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the mai...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.02.004

    authors: Gagné JP,Ethier C,Defoy D,Bourassa S,Langelier MF,Riccio AA,Pascal JM,Moon KM,Foster LJ,Ning Z,Figeys D,Droit A,Poirier GG

    更新日期:2015-06-01 00:00:00

  • Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II.

    abstract::8-Oxoguanine (8-oxoG) is a major oxidative lesion produced in DNA by normal cellular metabolism or after exposure to exogenous sources such as ionizing radiation. Persistence of this lesion in DNA causes G to T transversions, with deleterious consequences for the cell. As a result, several repair processes have evolve...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.01.003

    authors: Tornaletti S,Maeda LS,Kolodner RD,Hanawalt PC

    更新日期:2004-05-04 00:00:00

  • Archaeal DNA uracil repair via direct strand incision: A minimal system reconstituted from purified components.

    abstract::Hydrolytic deamination of DNA cytosine residues results in U/G mispairs, pre-mutagenic lesions threatening long-term genetic stability. Hence, DNA uracil repair is ubiquitous throughout all extant life forms and base excision repair, triggered by a uracil DNA glycosylase (UDG), is the mechanistic paradigm adopted, as ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.01.004

    authors: Schomacher L,Schürer KA,Ciirdaeva E,McDermott P,Chong JP,Kramer W,Fritz HJ

    更新日期:2010-04-04 00:00:00

  • Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes.

    abstract::Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.010

    authors: Maher RL,Prasad A,Rizvanova O,Wallace SS,Pederson DS

    更新日期:2013-11-01 00:00:00

  • Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination.

    abstract::Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for sp...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.07.004

    authors: Wang G,Maier RJ

    更新日期:2017-09-01 00:00:00

  • Endogenous levels of Rad51 and Brca2 are required for homologous recombination and regulated by homeostatic re-balancing.

    abstract::Stable expression of Rad51 siRNA was used to generate mouse hybridoma cell lines in which endogenous Rad51 levels were depleted by as much as 60%. Stable Rad51 knockdowns feature reduced homologous recombination responses. The relative ease with which stable Rad51 knockdowns were recovered was surprising, given the em...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.10.006

    authors: Magwood AC,Malysewich MJ,Cealic I,Mundia MM,Knapp J,Baker MD

    更新日期:2013-12-01 00:00:00

  • XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine.

    abstract::Me-lex is a sequence-specific alkylating agent synthesized to preferentially (>90%) generate N3-methyladenine (3-mA) in the minor groove of double-strand DNA, in A-T rich regions. In this paper we investigated the effect of XRCC1 deficiency in the processing of 3-mA adducts generated by Me-lex, through the molecular a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.03.016

    authors: Russo D,Fronza G,Ottaggio L,Monti P,Perfumo C,Inga A,Iyer P,Gold B,Menichini P

    更新日期:2010-07-01 00:00:00

  • AHNAK interacts with the DNA ligase IV-XRCC4 complex and stimulates DNA ligase IV-mediated double-stranded ligation.

    abstract::AHNAK is a high molecular weight protein that is under-expressed in several radiosensitive neuroblastoma cell lines. Using immunoaffinity purification or purified proteins, we show that AHNAK interacts specifically with the DNA ligase IV-XRCC4 complex, a complex that functions in DNA non-homologous end-joining. Furthe...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.11.001

    authors: Stiff T,Shtivelman E,Jeggo P,Kysela B

    更新日期:2004-03-04 00:00:00

  • Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.

    abstract::Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.01.001

    authors: Jin J,Hwang BJ,Chang PW,Toth EA,Lu AL

    更新日期:2014-03-01 00:00:00

  • Bacillus subtilis DisA helps to circumvent replicative stress during spore revival.

    abstract::The mechanisms that allow to circumvent replicative stress, and to resume DNA synthesis are poorly understood in Bacillus subtilis. To study the role of the diadenylate cyclase DisA and branch migration translocase (BMT) RadA/Sms in restarting a stalled replication fork, we nicked and broke the circular chromosome of ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.09.006

    authors: Raguse M,Torres R,Seco EM,Gándara C,Ayora S,Moeller R,Alonso JC

    更新日期:2017-11-01 00:00:00

  • Influence of XPB helicase on recruitment and redistribution of nucleotide excision repair proteins at sites of UV-induced DNA damage.

    abstract::The XPB DNA helicase, a subunit of the basal transcription factor TFIIH, is also involved in nucleotide excision repair (NER). We examined recruitment of NER proteins in XP-B cells from patients with mild or severe xeroderma pigmentosum (XP) having different XPB mutations using local UV-irradiation through filters wit...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.03.025

    authors: Oh KS,Imoto K,Boyle J,Khan SG,Kraemer KH

    更新日期:2007-09-01 00:00:00

  • Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572.

    abstract::Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.12.011

    authors: Cao Z,Julin DA

    更新日期:2009-05-01 00:00:00

  • Catalytic mechanism of human DNA polymerase lambda with Mg2+ and Mn2+ from ab initio quantum mechanical/molecular mechanical studies.

    abstract::DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase lambda (Pollambda...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.07.007

    authors: Cisneros GA,Perera L,García-Díaz M,Bebenek K,Kunkel TA,Pedersen LG

    更新日期:2008-11-01 00:00:00