Granulosa cell subtypes respond by autophagy or cell death to oxLDL-dependent activation of the oxidized lipoprotein receptor 1 and toll-like 4 receptor.

Abstract:

:Autophagic cell death has been observed in granulosa cell cultures via the oxLDL-dependent activation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1). This activation might differ for cytokeratin-positive (CK(+)) and CK(-) granulosa cells. In particular, LOX-1 and toll-like receptor 4 (TLR4), one of the pattern recognition receptors of innate immunity, might be diversely regulated. Granulosa cell subtype cultures were established from the follicle harvests of patients undergoing in vitro fertilization (IVF) therapy. In response to oxLDL treatment, the fibroblast-like CK(-) cells upregulated LOX-1 and exhibited reparative autophagy, which could be blocked with anti-LOX-1 antibody. The epithelioid-like CK(+) cells did not regulate LOX-1 expression upon oxLDL application, but the expression of TLR4 and CD14 increased between 0 and 36 h of oxLDL/nDL treatment. This upregulation was associated with nonapoptotic cell death based on the absence of cleaved caspase-3. Reactive oxygen species (ROS) increased with 12 h oxLDL application and steroidogenic acute regulatory (StAR) protein expression was negligible. In CK(-) cells, the inhibition of TLR4 downregulated LOX-1 and induced apoptosis. We concluded that CK(-) granulosa cells are protected against oxLDL-dependent apoptosis by TLR4, whereas, in CK(+) cells, oxLDL-induced TLR4 activation triggers nonapoptotic cell death. The CK(+) cells might represent immune-like granulosa cells involved in ovarian remodeling processes.

journal_name

Autophagy

journal_title

Autophagy

authors

Serke H,Vilser C,Nowicki M,Hmeidan FA,Blumenauer V,Hummitzsch K,Lösche A,Spanel-Borowski K

doi

10.4161/auto.5.7.9507

subject

Has Abstract

pub_date

2009-10-01 00:00:00

pages

991-1003

issue

7

eissn

1554-8627

issn

1554-8635

pii

9507

journal_volume

5

pub_type

杂志文章
  • Puncta intended: connecting the dots between autophagy and cell stress networks.

    abstract::Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are p...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1775394

    authors: Ho CJ,Samarasekera G,Rothe K,Xu J,Yang KC,Leung E,Chan M,Jiang X,Gorski SM

    更新日期:2020-06-07 00:00:00

  • Role of autophagy in the host defense against Toxoplasma gondii in astrocytes.

    abstract::Autophagy has recently been implicated in the host defense against the intracellular protozoan pathogen, Toxoplasma gondii, a major opportunistic pathogen of the central nervous system in immunosuppressed individuals. In both IFN gamma-activated macrophages and astrocytes, the p47 GTPases traffic to the T. gondii para...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7637

    authors: Halonen SK

    更新日期:2009-02-01 00:00:00

  • VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway.

    abstract::Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VA...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1580103

    authors: Mao D,Lin G,Tepe B,Zuo Z,Tan KL,Senturk M,Zhang S,Arenkiel BR,Sardiello M,Bellen HJ

    更新日期:2019-07-01 00:00:00

  • Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration.

    abstract::Age-related macular degeneration (AMD) is a complex, degenerative and progressive eye disease that usually does not lead to complete blindness, but can result in severe loss of central vision. Risk factors for AMD include age, genetics, diet, smoking, oxidative stress and many cardiovascular-associated risk factors. A...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.24546

    authors: Kaarniranta K,Sinha D,Blasiak J,Kauppinen A,Veréb Z,Salminen A,Boulton ME,Petrovski G

    更新日期:2013-07-01 00:00:00

  • Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies.

    abstract::HSPB1 (heat shock protein family B [small] member 1) is a ubiquitously expressed molecular chaperone. Most mutations in HSPB1 cause axonal Charcot-Marie-Tooth neuropathy and/or distal hereditary motor neuropathy. In this study we show that mutations in HSPB1 lead to impairment of macroautophagic/autophagic flux. In HS...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569930

    authors: Haidar M,Asselbergh B,Adriaenssens E,De Winter V,Timmermans JP,Auer-Grumbach M,Juneja M,Timmerman V

    更新日期:2019-06-01 00:00:00

  • Harpooning the Cvt complex to the phagophore assembly site.

    abstract::Autophagy is a catabolic process employed by eukaryotes to degrade and recycle intracellular components. When this pathway is induced by starvation conditions, part of the cytoplasm and organelles are sequestered into double-membrane vesicles called autophagosomes, and delivered into the lysosome/vacuole for degradati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6657

    authors: Monastyrska I,Reggiori F,Klionsky DJ

    更新日期:2008-10-01 00:00:00

  • Autophagosome formation: Where the secretory and autophagy pathways meet.

    abstract::The upregulation of autophagosome formation in response to nutrient deprivation requires significant intracellular membrane rearrangements that are poorly understood. Recent findings have implicated COPII-coated vesicles, well known as ER-Golgi cargo transport carriers, as key players in macroautophagy. The role of CO...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.1080/15548627.2017.1287657

    authors: Wang J,Davis S,Zhu M,Miller EA,Ferro-Novick S

    更新日期:2017-05-04 00:00:00

  • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure.

    abstract::Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Gr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.7.3.14581

    authors: Ogawa M,Yoshikawa Y,Mimuro H,Hain T,Chakraborty T,Sasakawa C

    更新日期:2011-03-01 00:00:00

  • Painting a picture of autophagy in Drosophila.

    abstract::Drawing as a way of understanding things better/easier is in human nature, from textbook images through the models and graphical abstracts published in scientific papers to chalk talks during the academic job interview process. As a molecular cell biologist and geneticist, I always find it easier to show a microscopy ...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1659624

    authors: Juhász G

    更新日期:2019-11-01 00:00:00

  • Rapamycin and Alzheimer disease: a double-edged sword?

    abstract::Numerous studies have reported that inhibition of MTOR (mechanistic target of rapamycin kinase) clearly reduces Alzheimer disease neuropathological hallmarks in mouse models. This has resulted in calls for the use of the MTOR inhibitor rapamycin for the treatment of dementia in humans. Unfortunately, intervention with...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2019.1615823

    authors: Carosi JM,Sargeant TJ

    更新日期:2019-08-01 00:00:00

  • Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules.

    abstract::It has not been elucidated whether or not autophagy is induced by rhabdoviral G glycoproteins (G) in vertebrate organisms for which rhabdovirus infection is lethal. Our work provides the first evidence that both mammalian (vesicular stomatitis virus, VSV) and fish (viral hemorrhagic septicemia virus, VHSV, and spring ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29557

    authors: García-Valtanen P,Ortega-Villaizán Mdel M,Martínez-López A,Medina-Gali R,Pérez L,Mackenzie S,Figueras A,Coll JM,Estepa A

    更新日期:2014-09-01 00:00:00

  • Autophagy modulator plays a part in UV protection.

    abstract::Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196319

    authors: Yang Y,Quach C,Liang C

    更新日期:2016-09-01 00:00:00

  • Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae.

    abstract::Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recrui...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6375

    authors: Cheong H,Klionsky DJ

    更新日期:2008-07-01 00:00:00

  • Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR.

    abstract::Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1205770

    authors: Zhao J,Goldberg AL

    更新日期:2016-10-02 00:00:00

  • Autophagy proteins are not universally required for phagosome maturation.

    abstract::Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome ma...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1191724

    authors: Cemma M,Grinstein S,Brumell JH

    更新日期:2016-09-01 00:00:00

  • PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy.

    abstract::Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome bi...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1226735

    authors: Dias MV,Teixeira BL,Rodrigues BR,Sinigaglia-Coimbra R,Porto-Carreiro I,Roffé M,Hajj GN,Martins VR

    更新日期:2016-11-01 00:00:00

  • Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression.

    abstract::Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is com...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1385674

    authors: Perera ND,Sheean RK,Lau CL,Shin YS,Beart PM,Horne MK,Turner BJ

    更新日期:2018-01-01 00:00:00

  • Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    abstract::As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the signific...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.25804

    authors: Mao K,Klionsky DJ

    更新日期:2013-11-01 00:00:00

  • Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.

    abstract::The relationship between macroautophagy/autophagy and miRNA in regulating cancer cell motility is not clearly delineated. Here, we found that induction of BECN1-dependent or -independent autophagy decreased ubiquitin-binding proteins SQSTM1/p62 and CALCOCO2/NDP52. Downregulation of SQSTM1 (but not CALCOCO2) led to a d...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2018.1501135

    authors: Liao CC,Ho MY,Liang SM,Liang CM

    更新日期:2018-01-01 00:00:00

  • Recycling endosomes contribute to autophagosome formation.

    abstract::Autophagosome formation is a complex cellular process, which requires major membrane rearrangements leading to the creation of a relatively large double-membrane vesicle that directs its contents to the lysosome for degradation. Although various membrane compartments have been identified as sources for autophagosomal ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21486

    authors: Longatti A,Tooze SA

    更新日期:2012-11-01 00:00:00

  • Context effect: microRNA-10b in cancer cell proliferation, spread and death.

    abstract::Single microRNA (miRNA) can regulate expression of several or multiple principal targets in a specific microenvironment. In different cellular contexts, the same miRNA may exhibit diverse functions, depending on the repertoire and stoichiometry of its direct mRNA targets. For instance, in breast cancer, microRNA-10b (...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17371

    authors: Gabriely G,Teplyuk NM,Krichevsky AM

    更新日期:2011-11-01 00:00:00

  • A degradative detour for mutant TP53.

    abstract::Accumulation of mutant TP53 proteins in cancer cells has been recognized as an important factor that promotes cancer progression and metastasis. Thus, strategies that promote the degradation of mutant TP53 might be beneficial for the treatment of cancers. In a recent issue of Genes & Development, we demonstrated that ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26338

    authors: Vakifahmetoglu-Norberg H,Yuan J

    更新日期:2013-12-01 00:00:00

  • Autophagy protects renal tubular cells against cyclosporine toxicity.

    abstract::A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endo...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6477

    authors: Pallet N,Bouvier N,Legendre C,Gilleron J,Codogno P,Beaune P,Thervet E,Anglicheau D

    更新日期:2008-08-01 00:00:00

  • The axis of MAPK1/3-XBP1u-FOXO1 controls autophagic dynamics in cancer cells.

    abstract::Earlier studies have shown that macroautophagy is not a constitutively activated process, however, the mechanism of activation is not fully understood. Here, we report that autophagy is a dynamic process in cancer cells in response to glucose starvation. In addition, we determined that FOXO1 turnover is involved in th...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23918

    authors: Zhao Y,Li X,Ma K,Yang J,Zhou J,Fu W,Wei F,Wang L,Zhu WG

    更新日期:2013-05-01 00:00:00

  • Dissecting the localization and function of Atg18, Atg21 and Ygr223c.

    abstract::Atg18p and Atg21p are two highly homologous yeast autophagy proteins. Atg18p functions in both autophagy and the selective Cvt-pathway, while the function of Atg21p is restricted to the Cvt-pathway. The yeast genome encodes with Ygr223cp (Hsv2p), a third member of this protein family. So far no function has been assig...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6801

    authors: Krick R,Henke S,Tolstrup J,Thumm M

    更新日期:2008-10-01 00:00:00

  • Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease.

    abstract::Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstr...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24397

    authors: Hindle SJ,Elliott CJ

    更新日期:2013-06-01 00:00:00

  • Guidelines for the use and interpretation of assays for monitoring autophagy.

    abstract::In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update the...

    journal_title:Autophagy

    pub_type: 指南,杂志文章

    doi:10.4161/auto.19496

    authors: Klionsky DJ,Abdalla FC,Abeliovich H,Abraham RT,Acevedo-Arozena A,Adeli K,Agholme L,Agnello M,Agostinis P,Aguirre-Ghiso JA,Ahn HJ,Ait-Mohamed O,Ait-Si-Ali S,Akematsu T,Akira S,Al-Younes HM,Al-Zeer MA,Albert ML,Albin RL

    更新日期:2012-04-01 00:00:00

  • One step closer to understanding mammalian macroautophagy initiation: Interplay of 2 HORMA architectures in the ULK1 complex.

    abstract::ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 s...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1087635

    authors: Popelka H,Klionsky DJ

    更新日期:2015-11-02 00:00:00

  • DJ-1 regulation of mitochondrial function and autophagy through oxidative stress.

    abstract::The dysregulation of mitochondrial function has been implicated in the pathogenesis of Parkinson disease. Mutations in the parkin, PINK1 and DJ-1 genes all result in recessive parkinsonism. Although the protein products of these genes have not been fully characterized, it has been established that all three contribute...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.5.14684

    authors: McCoy MK,Cookson MR

    更新日期:2011-05-01 00:00:00

  • ATM loss disrupts the autophagy-lysosomal pathway.

    abstract::ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with de...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1805860

    authors: Cheng A,Tse KH,Chow HM,Gan Y,Song X,Ma F,Qian YXY,She W,Herrup K

    更新日期:2020-08-14 00:00:00