Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR.

Abstract:

:Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most studies of the UPS have focused on the selective ubiquitination and breakdown of specific cell proteins, macroautophagy/autophagy is a more global nonselective process. Consequently, the UPS and autophagy were traditionally assumed to serve distinct physiological functions and to be regulated in quite different manners. However, recent findings indicate that protein breakdown by these 2 systems is coordinately regulated by important physiological stimuli. The activation of MTORC1 by nutrients and hormones rapidly suppresses proteolysis by both proteasomes and autophagy, which helps promote protein accumulation, whereas in nutrient-poor conditions, MTORC1 inactivation causes the simultaneous activation of these 2 degradative pathways to supply the deprived cells with a source of amino acids. Also this selective breakdown of key anabolic proteins by the UPS upon MTORC1 inhibition can help limit growth-related processes (e.g., cholesterol biosynthesis). Thus, the collaboration of these 2 degradative systems, together with the simultaneous control of protein translation by MTORC1, provide clear advantages to the organism in both growth and starvation conditions.

journal_name

Autophagy

journal_title

Autophagy

authors

Zhao J,Goldberg AL

doi

10.1080/15548627.2016.1205770

subject

Has Abstract

pub_date

2016-10-02 00:00:00

pages

1967-1970

issue

10

eissn

1554-8627

issn

1554-8635

journal_volume

12

pub_type

杂志文章
  • Regulation of plasma membrane receptors by a new autophagy-related BECN/Beclin family member.

    abstract::We have recently shown the roles of an autophagy gene in the regulation of metabolism and metabolic diseases. We identified Becn2/Beclin 2, a novel mammalian specific homolog of Becn1/Beclin 1, characterized the functions of the gene product in autophagy and agonist-induced lysosome-mediated downregulation of a subset...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29414

    authors: Zhang W,He C

    更新日期:2014-08-01 00:00:00

  • The interplay between PRKCI/PKCλ/ι, SQSTM1/p62, and autophagy orchestrates the oxidative metabolic response that drives liver cancer.

    abstract::Hepatocellular carcinoma (HCC) is the consequence of chronic liver damage caused by the excessive generation of reactive oxygen species (ROS). To mitigate the deleterious effects of ROS, cells activate the transcription factor NFE2L2/NRF2, which is constitutively degraded through its partner KEAP1. The inactivation of...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.1080/15548627.2020.1797290

    authors: Moscat J,Diaz-Meco MT

    更新日期:2020-10-01 00:00:00

  • CYB5A and autophagy-mediated cell death in pancreatic cancer.

    abstract::The highly invasive and chemoresistant phenotype of pancreatic cancer highlights the urgency to identify prognostic biomarkers and novel therapeutic targets. Recently, we observed a significant correlation between shorter survival and loss of the cytoband 18q22.3. Here we investigated genes encoded by this cytoband, a...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.27803

    authors: Giovannetti E,Giaccone G

    更新日期:2014-04-01 00:00:00

  • Caspase activation regulates the extracellular export of autophagic vacuoles.

    abstract::The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct fro...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19768

    authors: Sirois I,Groleau J,Pallet N,Brassard N,Hamelin K,Londono I,Pshezhetsky AV,Bendayan M,Hébert MJ

    更新日期:2012-06-01 00:00:00

  • The axis of MAPK1/3-XBP1u-FOXO1 controls autophagic dynamics in cancer cells.

    abstract::Earlier studies have shown that macroautophagy is not a constitutively activated process, however, the mechanism of activation is not fully understood. Here, we report that autophagy is a dynamic process in cancer cells in response to glucose starvation. In addition, we determined that FOXO1 turnover is involved in th...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23918

    authors: Zhao Y,Li X,Ma K,Yang J,Zhou J,Fu W,Wei F,Wang L,Zhu WG

    更新日期:2013-05-01 00:00:00

  • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure.

    abstract::Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Gr...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.7.3.14581

    authors: Ogawa M,Yoshikawa Y,Mimuro H,Hain T,Chakraborty T,Sasakawa C

    更新日期:2011-03-01 00:00:00

  • Q6, a novel hypoxia-targeted drug, regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma.

    abstract::Tumor hypoxia underlies treatment failure and yields more aggressive and metastatic cancer phenotypes. Although therapeutically targeting these hypoxic environments has been proposed for many years, to date no approaches have shown the therapeutic value to gain regulatory approval. Here, we demonstrated that a novel h...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26838

    authors: Liu XW,Cai TY,Zhu H,Cao J,Su Y,Hu YZ,He QJ,Yang B

    更新日期:2014-01-01 00:00:00

  • A histone point mutation that switches on autophagy.

    abstract::The multifaceted process of aging inevitably leads to disturbances in cellular metabolism and protein homeostasis. To meet this challenge, cells make use of autophagy, which is probably one of the most important pathways preserving cellular protection under stressful conditions. Thus, efficient autophagic flux is requ...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.28767

    authors: Eisenberg T,Schroeder S,Büttner S,Carmona-Gutierrez D,Pendl T,Andryushkova A,Mariño G,Pietrocola F,Harger A,Zimmermann A,Magnes C,Sinner F,Sedej S,Pieber TR,Dengjel J,Sigrist S,Kroemer G,Madeo F

    更新日期:2014-06-01 00:00:00

  • Autophagy and post-ischemic conditioning in retinal ischemia.

    abstract::Retinal ischemia is a major cause of vision loss and a common underlying mechanism associated with diseases, such as diabetic retinopathy and central retinal artery occlusion. We have previously demonstrated the robust neuroprotection in retina induced by post-conditioning (post-C), a brief period of ischemia, 24 h, f...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1767371

    authors: Mathew B,Chennakesavalu M,Sharma M,Torres LA,Stelman CR,Tran S,Patel R,Burg N,Salkovski M,Kadzielawa K,Seiler F,Aldrich LN,Roth S

    更新日期:2020-05-26 00:00:00

  • The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.

    abstract::Mitochondrial dysfunction is an early sign of many neurodegenerative diseases. Very recently, two Parkinson disease (PD) associated genes, PINK1 and Parkin, were shown to mediate the degradation of damaged mitochondria via selective autophagy (mitophagy). PINK1 kinase activity is needed for prompt and efficient Parkin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13286

    authors: Geisler S,Holmström KM,Treis A,Skujat D,Weber SS,Fiesel FC,Kahle PJ,Springer W

    更新日期:2010-10-01 00:00:00

  • How autophagy regulates the host cell signaling associated with the postpartum bacteria cocoon experienced as a danger signal.

    abstract::Shigella, the causative agent of human bacillary dysentery, invades the host cell, rapidly breaking the phagosome and multiplying in the cytosol. Here, we summarize our recent work showing the targeting of the leftover membrane remnants to autophagy together with trapped membrane-associated signaling molecules recruit...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.8.10218

    authors: Dupont N,Lafont F

    更新日期:2009-11-01 00:00:00

  • Early alterations of autophagy in Huntington disease-like mice.

    abstract::In a recent study, we reported in vivo evidence of early and sustained alterations of autophagy markers in a novel knock-in mouse model of Huntington disease (HD). The novel model is derived from selective breeding of HdhQ150 knock-in mice to generate mice with ~200 CAG/polyglutamine repeats (HdhQ200). HdhQ200 knockin...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13617

    authors: Heng MY,Detloff PJ,Paulson HL,Albin RL

    更新日期:2010-11-01 00:00:00

  • Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection.

    abstract::Oxidative stress (OS) stimulates autophagy in different cellular systems, but it remains controversial if this rule can be generalized. We have analyzed the effect of chronic OS induced by the parkinsonian toxin paraquat (PQ) on autophagy in astrocytoma cells and primary astrocytes, which represent the first cellular ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1058683

    authors: Janda E,Lascala A,Carresi C,Parafati M,Aprigliano S,Russo V,Savoia C,Ziviani E,Musolino V,Morani F,Isidoro C,Mollace V

    更新日期:2015-01-01 00:00:00

  • Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    abstract::Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1278093

    authors: Hu Y,Huang Y,Yi Y,Wang H,Liu B,Yu J,Wang D

    更新日期:2017-04-03 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • Painting a picture of autophagy in Drosophila.

    abstract::Drawing as a way of understanding things better/easier is in human nature, from textbook images through the models and graphical abstracts published in scientific papers to chalk talks during the academic job interview process. As a molecular cell biologist and geneticist, I always find it easier to show a microscopy ...

    journal_title:Autophagy

    pub_type: 评论,社论

    doi:10.1080/15548627.2019.1659624

    authors: Juhász G

    更新日期:2019-11-01 00:00:00

  • Mitochondrial fission facilitates mitophagy in Saccharomyces cerevisiae.

    abstract::As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the signific...

    journal_title:Autophagy

    pub_type: 评论,杂志文章

    doi:10.4161/auto.25804

    authors: Mao K,Klionsky DJ

    更新日期:2013-11-01 00:00:00

  • PKD at the crossroads of necrosis and autophagy.

    abstract::Reactive oxygen species (ROS) that accumulate under oxidative pressure cause severe damage to cellular components, and induce various cellular responses, including apoptosis, programmed necrosis and autophagy, depending on the cellular setting. Various studies have described ROS-induced autophagy, but only a few direc...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.19288

    authors: Eisenberg-Lerner A,Kimchi A

    更新日期:2012-03-01 00:00:00

  • Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs.

    abstract::Autophagosome formation depends on a carefully orchestrated interplay between membrane-associated protein complexes. Initiation of macroautophagy/autophagy is mediated by the ULK1 (unc-51 like autophagy activating kinase 1) protein kinase complex and the autophagy-specific class III phosphatidylinositol 3-kinase compl...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1581009

    authors: Birgisdottir ÅB,Mouilleron S,Bhujabal Z,Wirth M,Sjøttem E,Evjen G,Zhang W,Lee R,O'Reilly N,Tooze SA,Lamark T,Johansen T

    更新日期:2019-08-01 00:00:00

  • Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression.

    abstract::Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is com...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1385674

    authors: Perera ND,Sheean RK,Lau CL,Shin YS,Beart PM,Horne MK,Turner BJ

    更新日期:2018-01-01 00:00:00

  • Folding into an autophagosome: ATG5 sheds light on how plants do it.

    abstract::Autophagosomes arise in yeast and animals from the sealing of a cup-shaped double-membrane precursor, the phagophore. The concerted action of about 30 evolutionarily conserved autophagy related (ATG) proteins lies at the core of this process. However, the mechanisms allowing phagophore generation and its differentiati...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.29962

    authors: Le Bars R,Marion J,Satiat-Jeunemaitre B,Bianchi MW

    更新日期:2014-10-01 00:00:00

  • IRGM Links Autoimmunity to Autophagy.

    abstract::IRGM is a genetic risk factor for several autoimmune diseases. However, the mechanism of IRGM-mediated protection in autoimmunity remains undetermined. The abnormal activation of type I interferon (IFN) response is one of the significant factors in the pathogenesis of several autoimmune diseases. In our recent study, ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1810920

    authors: Nath P,Jena KK,Mehto S,Chauhan NR,Sahu R,Dhar K,Srinivas K,Chauhan S,Chauhan S

    更新日期:2020-08-19 00:00:00

  • MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    abstract::Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Her...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.26447

    authors: Wang Y,Hu Z,Liu Z,Chen R,Peng H,Guo J,Chen X,Zhang H

    更新日期:2013-12-01 00:00:00

  • Spatiotemporal dynamics of autophagy receptors in selective mitophagy.

    abstract::Damaged mitochondria are turned over through a process of selective autophagy termed mitophagy. In mitophagy, unhealthy mitochondria are recognized and ubiquitinated by Parkinson disease-linked proteins PINK1 and PARK2. The subsequent recruitment of ubiquitin-binding autophagy receptors leads in turn to the sequestrat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1212788

    authors: Moore AS,Holzbaur EL

    更新日期:2016-10-02 00:00:00

  • 4th International Symposium on Autophagy: exploiting the frontiers of autophagy research.

    abstract::The 4th International Symposium on Autophagy was held in Mishima, a small town between Tokyo and Kyoto, October 1-5, 2006 (http://isa4th.umin.jp/). The meeting was organized by the group of Eiki Kominami. Approximately 150 participants took part in this well-organized meeting in the spacious and comfortable Toray Conf...

    journal_title:Autophagy

    pub_type:

    doi:10.4161/auto.3654

    authors: Eskelinen EL,Deretic V,Neufeld T,Levine B,Cuervo AM

    更新日期:2007-03-01 00:00:00

  • Targeted therapy for the loss of von Hippel-Lindau in renal cell carcinoma: a novel molecule that induces autophagic cell death.

    abstract::Radiation and conventional cytotoxic chemotherapies are ineffective in treating renal cancer. Approximately 75 percent of renal cell carcinoma (RCC) is associated with an inactivation of the tumor suppressor gene von Hippel-Lindau (VHL). We exploited the possibility of targeting VHL-deficient RCC through synthetic let...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6785

    authors: Turcotte S,Sutphin PD,Giaccia AJ

    更新日期:2008-10-01 00:00:00

  • Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae.

    abstract::Most autophagy-related (Atg) proteins are assembled at the phagophore assembly site or pre-autophagosomal structure (PAS), which is a potential site for vesicle formation during vegetative or starvation conditions. To understand the initial step of vesicle formation, it is important to know how Atg proteins are recrui...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6375

    authors: Cheong H,Klionsky DJ

    更新日期:2008-07-01 00:00:00

  • The regulation of autophagy in eukaryotic cells: do all roads pass through Atg1?

    abstract::The induction of autophagy appears to be tightly controlled in all eukaryotic cells. This highly conserved, degradative process is induced by a variety of signals, including nutrient deprivation, and is generally thought to be incompatible with rapid cell growth. Recent work in the budding yeast, Saccharomyces cerevis...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2.2.2485

    authors: Stephan JS,Herman PK

    更新日期:2006-04-01 00:00:00

  • Potential role of autophagy in behavioral changes of the flank organ.

    abstract::The flank organ of the Syrian hamster, which shows a biodynamic response to androgen stimulation, is considered a good model for studying the androgen effect on sebaceous gland and hair. This organ is susceptible to programmed cell death (PCD), a prominent feature associated with sexual organ adjustment. We have recen...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.2.7619

    authors: Vega-Naredo I,Tomas-Zapico C,Coto-Montes A

    更新日期:2009-02-01 00:00:00

  • Simultaneous assessment of autophagy and apoptosis using multispectral imaging cytometry.

    abstract::Multiple stress pathways result in the induction of autophagy and apoptosis. Current methods (e.g., protein gel blot, microscopy) do not offer quantitative single-cell resolution, thus making it difficult to discern if these pathways are mutually exclusive or, in some situations, cooperative in executing cell death. W...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.9.16252

    authors: de la Calle C,Joubert PE,Law HK,Hasan M,Albert ML

    更新日期:2011-09-01 00:00:00