4th International Symposium on Autophagy: exploiting the frontiers of autophagy research.

Abstract:

:The 4th International Symposium on Autophagy was held in Mishima, a small town between Tokyo and Kyoto, October 1-5, 2006 (http://isa4th.umin.jp/). The meeting was organized by the group of Eiki Kominami. Approximately 150 participants took part in this well-organized meeting in the spacious and comfortable Toray Conference Hall (Fig. 1). The social program offered opportunities for informal discussions, Japanese culture (from karaoke singing to traditional drumming; Fig. 2), history and nature (a visit to a steaming volcano; Fig. 3), as well as delicious Japanese food. The scientific program started with two plenary lectures on Sunday evening. Daniel Klionsky gave an overview of Atg9 cycling in yeast and Shigekazu Nagata talked about apoptosis and engulfment of dead cells by macrophages. The meeting consisted of five oral sessions and two poster sessions covering a wide range of autophagy-related topics. Exciting unpublished results were presented in all sessions, showing how quickly autophagy research is progressing. Two themes were discussed in many sessions during the symposium: the role of autophagy in the degradation of aggregate-prone proteins and protein aggregates, and the possible role of p62 in autophagy.

journal_name

Autophagy

journal_title

Autophagy

authors

Eskelinen EL,Deretic V,Neufeld T,Levine B,Cuervo AM

doi

10.4161/auto.3654

subject

Has Abstract

pub_date

2007-03-01 00:00:00

pages

166-73

issue

2

eissn

1554-8627

issn

1554-8635

pii

3654

journal_volume

3

pub_type

  • Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages.

    abstract::Phagocytosis of naturally dying cells usually blocks inflammatory reactions in host cells. We have recently observed that clearance of cells dying through autophagy leads to a pro-inflammatory response in human macrophages. Investigating this response further, we found that during engulfment of MCF-7 or 293T cells und...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.3.14583

    authors: Petrovski G,Ayna G,Majai G,Hodrea J,Benko S,Mádi A,Fésüs L

    更新日期:2011-03-01 00:00:00

  • Autophagy, Inflammation, and Metabolism (AIM) Center in its second year.

    abstract::The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally...

    journal_title:Autophagy

    pub_type: 历史文章,杂志文章

    doi:10.1080/15548627.2019.1634444

    authors: Deretic V,Prossnitz E,Burge M,Campen MJ,Cannon J,Liu KJ,Liu M,Hall P,Sklar LA,Allers L,Mariscal L,Garcia SA,Weaver J,Baehrecke EH,Behrends C,Cecconi F,Codogno P,Chen GC,Elazar Z,Eskelinen EL,Fourie B,Gozuacik D

    更新日期:2019-10-01 00:00:00

  • The combination of a histone deacetylase inhibitor with the BH3-mimetic GX15-070 has synergistic antileukemia activity by activating both apoptosis and autophagy.

    abstract::We analyzed the cellular and molecular effects of two different histone deacetylase inhibitors (HDACi), MGCD0103 and vorinostat, in combination with GX15-070, a BH3-mimetic, in acute myeloid leukemia (AML) cell lines and primary AML cells, and demonstrated that the combination has a synergistic antileukemia effect. We...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.7.13117

    authors: Wei Y,Kadia T,Tong W,Zhang M,Jia Y,Yang H,Hu Y,Viallet J,O'Brien S,Garcia-Manero G

    更新日期:2010-10-01 00:00:00

  • Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease.

    abstract::The precise degradation of dysfunctional mitochondria by mitophagy is essential for maintaining neuronal homeostasis. HTT (huntingtin) can interact with numerous other proteins and thereby perform multiple biological functions within the cell. In this study, we investigated the role of HTT during mitophagy and analyze...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2020.1728096

    authors: Franco-Iborra S,Plaza-Zabala A,Montpeyo M,Sebastian D,Vila M,Martinez-Vicente M

    更新日期:2020-02-24 00:00:00

  • ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction.

    abstract::ULK1 (unc51-like autophagy activating kinase 1) is a serine/threonine kinase that plays a key role in regulating macroautophagy/autophagy induction in response to amino acid starvation. Despite the recent progress in understanding ULK1 functions, the molecular mechanism by which ULK1 regulates the induction of autopha...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1422851

    authors: Park JM,Seo M,Jung CH,Grunwald D,Stone M,Otto NM,Toso E,Ahn Y,Kyba M,Griffin TJ,Higgins L,Kim DH

    更新日期:2018-01-01 00:00:00

  • Autophagy maintains cardiac function in the starved adult.

    abstract::To examine the functional significance and detailed morphological characteristics of starvation-induced autophagy in the adult heart, we starved green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice for up to 3 days. Electron microscopy revealed that, after as little as 1...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.7.9297

    authors: Takemura G,Kanamori H,Goto K,Maruyama R,Tsujimoto A,Fujiwara H,Seishima M,Minatoguchi S

    更新日期:2009-10-01 00:00:00

  • The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts.

    abstract::The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LR...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.21270

    authors: Bravo-San Pedro JM,Gómez-Sánchez R,Niso-Santano M,Pizarro-Estrella E,Aiastui-Pujana A,Gorostidi A,Climent V,López de Maturana R,Sanchez-Pernaute R,López de Munain A,Fuentes JM,González-Polo RA

    更新日期:2012-10-01 00:00:00

  • Implications of autophagy in anthrax pathogenicity.

    abstract::The etiological agent for anthrax is Bacillus anthracis, which produces lethal toxin (LT) that exerts a myriad of effects on many immune cells. In our previous study, it was demonstrated that LT and protective antigen (PA) induce autophagy in mammalian cells. Preliminary results suggest that autophagy may function as ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.5.8567

    authors: Tan YK,Vu HA,Kusuma CM,Wu A

    更新日期:2009-07-01 00:00:00

  • How to interpret LC3 immunoblotting.

    abstract::Microtubule-associated protein light chain 3 (LC3) is now widely used to monitor autophagy. One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis because the amount of LC3-II is clearly correlated with the number of autophagosomes. However, LC3-II itself is degraded by autophagy, making int...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.4600

    authors: Mizushima N,Yoshimori T

    更新日期:2007-11-01 00:00:00

  • Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity.

    abstract::Many recent studies indicate that dysregulation of autophagy is a common feature of many neurodegenerative diseases. The HIV-1-associated neurological disorder is an acquired cognitive and motor disease that includes a severe neurodegenerative dementia. We find that the neurodegeneration seen in the brain in HIV-1 inf...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6805

    authors: Alirezaei M,Kiosses WB,Fox HS

    更新日期:2008-10-01 00:00:00

  • Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    abstract::Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high signif...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1196313

    authors: Huang H,Zhu J,Li Y,Zhang L,Gu J,Xie Q,Jin H,Che X,Li J,Huang C,Chen LC,Lyu J,Gao J,Huang C

    更新日期:2016-10-02 00:00:00

  • Autophagy is required for the degeneration of the ovarian follicular epithelium in higher Diptera.

    abstract::Autophagy is a major pathway for the degradation of long-lived proteins and cytoplasmic organelles and an essential part of programmed cell death, as well. Our findings indicate that programmed cell death of the ovarian follicle cells in the higher Diptera species Bactrocera oleae and Ceratitis capitata manifests feat...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.2858

    authors: Nezis IP,Stravopodis DJ,Margaritis LH,Papassideri IS

    更新日期:2006-10-01 00:00:00

  • Discovery of a novel type of autophagy targeting RNA.

    abstract::Regulated degradation of cellular components by lysosomes is essential to maintain biological homeostasis. In mammals, three forms of autophagy, macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), have been identified. Here, we showed a novel type of autophagy, in which RNA is taken up directly into...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.23002

    authors: Fujiwara Y,Furuta A,Kikuchi H,Aizawa S,Hatanaka Y,Konya C,Uchida K,Yoshimura A,Tamai Y,Wada K,Kabuta T

    更新日期:2013-03-01 00:00:00

  • Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

    abstract::Glioblastoma is one of the most aggressive human cancers with poor prognosis, and therefore a critical need exists for novel therapeutic strategies for management of glioblastoma patients. Itraconazole, a traditional antifungal drug, has been identified as a novel potential anticancer agent due to its inhibitory effec...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28912

    authors: Liu R,Li J,Zhang T,Zou L,Chen Y,Wang K,Lei Y,Yuan K,Li Y,Lan J,Cheng L,Xie N,Xiang R,Nice EC,Huang C,Wei Y

    更新日期:2014-07-01 00:00:00

  • The yin and yang of autophagy in acute kidney injury.

    abstract::Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosur...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2015.1135284

    authors: Melk A,Baisantry A,Schmitt R

    更新日期:2016-01-01 00:00:00

  • Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.

    abstract::Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pig...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1327509

    authors: Ramkumar A,Murthy D,Raja DA,Singh A,Krishnan A,Khanna S,Vats A,Thukral L,Sharma P,Sivasubbu S,Rani R,Natarajan VT,Gokhale RS

    更新日期:2017-08-03 00:00:00

  • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy.

    abstract::The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins ...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.28478

    authors: Costes S,Gurlo T,Rivera JF,Butler PC

    更新日期:2014-06-01 00:00:00

  • Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome.

    abstract::Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which w...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1173799

    authors: Follo C,Barbone D,Richards WG,Bueno R,Broaddus VC

    更新日期:2016-07-02 00:00:00

  • AMPK connects energy stress to PIK3C3/VPS34 regulation.

    abstract::The class III phosphatidylinositol (PtdIns)-3 kinase, PIK3C3/VPS34, forms multiple complexes and regulates a variety of cellular functions, especially in intracellular vesicle trafficking and autophagy. Even though PtdIns3P, the product of PIK3C3, is thought to be a critical membrane marker for the autophagosome, it i...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.24877

    authors: Kim J,Guan KL

    更新日期:2013-07-01 00:00:00

  • In vivo imaging of autophagy in a mouse stroke model.

    abstract::Recent studies have suggested that autophagy is involved in a neural death pathway following cerebral ischemia. In vivo detection of autophagy could be important for evaluating ischemic neural cell damage for human stroke patients. Using novel green fluorescent protein (GFP)-fused microtubule-associated protein 1 ligh...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.8.13427

    authors: Tian F,Deguchi K,Yamashita T,Ohta Y,Morimoto N,Shang J,Zhang X,Liu N,Ikeda Y,Matsuura T,Abe K

    更新日期:2010-11-01 00:00:00

  • Beyond autophagy: the role of UVRAG in membrane trafficking.

    abstract::Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6496

    authors: Liang C,Sir D,Lee S,Ou JH,Jung JU

    更新日期:2008-08-01 00:00:00

  • Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    abstract::Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial c...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2016.1278093

    authors: Hu Y,Huang Y,Yi Y,Wang H,Liu B,Yu J,Wang D

    更新日期:2017-04-03 00:00:00

  • In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy.

    abstract::In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and prop...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2017.1403716

    authors: Kravic B,Harbauer AB,Romanello V,Simeone L,Vögtle FN,Kaiser T,Straubinger M,Huraskin D,Böttcher M,Cerqua C,Martin ED,Poveda-Huertes D,Buttgereit A,Rabalski AJ,Heuss D,Rudolf R,Friedrich O,Litchfield D,Marber M,Salvi

    更新日期:2018-01-01 00:00:00

  • The role of MTMR14 in autophagy and in muscle disease.

    abstract::Phosphoinositides (PIs) are a group of low-abundance phospholipids that play a critical role in the control of organelle and membrane traffic. There is strong evidence that specific PIs are also important for the regulation of autophagy. PIs are modified by a complex network of lipid kinases and phosphatases. A recent...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.6.12624

    authors: Gibbs EM,Feldman EL,Dowling JJ

    更新日期:2010-08-01 00:00:00

  • Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity.

    abstract::One of the major side effects of cisplatin chemotherapy is toxic acute kidney injury due to preferential accumulation of cisplatin in renal proximal tubule epithelial cells and the subsequent injury to these cells. Apoptosis is known as a major mechanism of cisplatin-induced cell death in renal tubular cells. We have ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6309

    authors: Kaushal GP,Kaushal V,Herzog C,Yang C

    更新日期:2008-07-01 00:00:00

  • Context effect: microRNA-10b in cancer cell proliferation, spread and death.

    abstract::Single microRNA (miRNA) can regulate expression of several or multiple principal targets in a specific microenvironment. In different cellular contexts, the same miRNA may exhibit diverse functions, depending on the repertoire and stoichiometry of its direct mRNA targets. For instance, in breast cancer, microRNA-10b (...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.7.11.17371

    authors: Gabriely G,Teplyuk NM,Krichevsky AM

    更新日期:2011-11-01 00:00:00

  • Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.

    abstract::Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages,...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.1080/15548627.2019.1569297

    authors: Masud S,Prajsnar TK,Torraca V,Lamers GEM,Benning M,Van Der Vaart M,Meijer AH

    更新日期:2019-05-01 00:00:00

  • Autophagy protects neuron from Abeta-induced cytotoxicity.

    abstract::Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of beta-amyloid peptide has been reported to be a major cause of Alzheimer disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, ho...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.5.4.8096

    authors: Hung SY,Huang WP,Liou HC,Fu WM

    更新日期:2009-05-01 00:00:00

  • The life span-prolonging effect of sirtuin-1 is mediated by autophagy.

    abstract::The life span of various model organisms can be extended by caloric restriction as well as by autophagy-inducing pharmacological agents. Life span-prolonging effects have also been observed in yeast cells, nematodes and flies upon the overexpression of the deacetylase Sirtuin-1. Intrigued by these observations and by ...

    journal_title:Autophagy

    pub_type: 杂志文章,评审

    doi:10.4161/auto.6.1.10817

    authors: Morselli E,Maiuri MC,Markaki M,Megalou E,Pasparaki A,Palikaras K,Criollo A,Galluzzi L,Malik SA,Vitale I,Michaud M,Madeo F,Tavernarakis N,Kroemer G

    更新日期:2010-01-01 00:00:00

  • A novel quantitative flow cytometry-based assay for autophagy.

    abstract::Autophagy is a cellular degradation process with an increasingly recognised importance in many biological pathways such as nutrient sensing, stress responses and development. We present a straightforward assay for autophagy which combines the sensitivity of the EGFP-LC3 reporter protein with the throughput capacity an...

    journal_title:Autophagy

    pub_type: 杂志文章

    doi:10.4161/auto.6.5.12112

    authors: Eng KE,Panas MD,Karlsson Hedestam GB,McInerney GM

    更新日期:2010-07-01 00:00:00