Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.

Abstract:

:Mycobacterium tuberculosis and Yersinia pestis, the causative agents of tuberculosis and plague, respectively, are pathogens with serious ongoing impact on global public health and potential use as agents of bioterrorism. Both pathogens have iron acquisition systems based on siderophores, secreted iron-chelating compounds with extremely high Fe3+ affinity. Several lines of evidence suggest that siderophores have a critical role in bacterial iron acquisition inside the human host, where the free iron concentration is well below that required for bacterial growth and virulence. Thus, siderophore biosynthesis is an attractive target in the development of new antibiotics to treat tuberculosis and plague. In particular, such drugs, alone or as part of combination therapies, could provide a valuable new line of defense against intractable multiple-drug-resistant infections. Here, we report the design, synthesis and biological evaluation of a mechanism-based inhibitor of domain salicylation enzymes required for siderophore biosynthesis in M. tuberculosis and Y. pestis. This new antibiotic inhibits siderophore biosynthesis and growth of M. tuberculosis and Y. pestis under iron-limiting conditions.

journal_name

Nat Chem Biol

journal_title

Nature chemical biology

authors

Ferreras JA,Ryu JS,Di Lello F,Tan DS,Quadri LE

doi

10.1038/nchembio706

keywords:

subject

Has Abstract

pub_date

2005-06-01 00:00:00

pages

29-32

issue

1

eissn

1552-4450

issn

1552-4469

pii

nchembio706

journal_volume

1

pub_type

杂志文章
  • Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor.

    abstract::Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in c...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2463

    authors: He X,Riceberg J,Soucy T,Koenig E,Minissale J,Gallery M,Bernard H,Yang X,Liao H,Rabino C,Shah P,Xega K,Yan ZH,Sintchak M,Bradley J,Xu H,Duffey M,England D,Mizutani H,Hu Z,Guo J,Chau R,Dick LR,Brownell JE,Ne

    更新日期:2017-11-01 00:00:00

  • Allosteric inhibition of kinesin-5 modulates its processive directional motility.

    abstract::Small-molecule inhibitors of kinesin-5 (refs. 1-3), a protein essential for eukaryotic cell division, represent alternatives to antimitotic agents that target tubulin. While tubulin is needed for multiple intracellular processes, the known functions of kinesin-5 are limited to dividing cells, making it likely that kin...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio812

    authors: Kwok BH,Kapitein LC,Kim JH,Peterman EJ,Schmidt CF,Kapoor TM

    更新日期:2006-09-01 00:00:00

  • ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands.

    abstract::The ykkC family of bacterial riboswitches combines several widespread classes that have similar secondary structures and consensus motifs but control different genes in response to different cellular metabolites. Here we report the crystal structures of two distinct ykkC riboswitches specifically bound to their cognat...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-018-0114-4

    authors: Peselis A,Serganov A

    更新日期:2018-09-01 00:00:00

  • Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair.

    abstract::The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-b...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2555

    authors: Uchida N,Takahashi K,Iwasaki R,Yamada R,Yoshimura M,Endo TA,Kimura S,Zhang H,Nomoto M,Tada Y,Kinoshita T,Itami K,Hagihara S,Torii KU

    更新日期:2018-03-01 00:00:00

  • A propofol binding site on mammalian GABAA receptors identified by photolabeling.

    abstract::Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1340

    authors: Yip GM,Chen ZW,Edge CJ,Smith EH,Dickinson R,Hohenester E,Townsend RR,Fuchs K,Sieghart W,Evers AS,Franks NP

    更新日期:2013-11-01 00:00:00

  • Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol.

    abstract::Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed ma...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2268

    authors: Liu SL,Sheng R,Jung JH,Wang L,Stec E,O'Connor MJ,Song S,Bikkavilli RK,Winn RA,Lee D,Baek K,Ueda K,Levitan I,Kim KP,Cho W

    更新日期:2017-03-01 00:00:00

  • Structure and function of the bacterial decapping enzyme NudC.

    abstract::RNA capping and decapping are thought to be distinctive features of eukaryotes. The redox cofactor NAD was recently discovered to be attached to small regulatory RNAs in bacteria in a cap-like manner, and Nudix hydrolase NudC was found to act as a NAD-decapping enzyme in vitro and in vivo. Here, crystal structures of ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2132

    authors: Höfer K,Li S,Abele F,Frindert J,Schlotthauer J,Grawenhoff J,Du J,Patel DJ,Jäschke A

    更新日期:2016-09-01 00:00:00

  • Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.

    abstract::We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revea...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2068

    authors: Yumerefendi H,Lerner AM,Zimmerman SP,Hahn K,Bear JE,Strahl BD,Kuhlman B

    更新日期:2016-06-01 00:00:00

  • Light-based control of metabolic flux through assembly of synthetic organelles.

    abstract::To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems comp...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/s41589-019-0284-8

    authors: Zhao EM,Suek N,Wilson MZ,Dine E,Pannucci NL,Gitai Z,Avalos JL,Toettcher JE

    更新日期:2019-06-01 00:00:00

  • Working towards an exegesis for lipids in biology.

    abstract::As a field, lipidomics is in its infancy, yet it has already begun to influence lipid biochemistry in myriad ways. As with other omic technologies, the field is driven by advances in analytical chemistry, particularly by mass spectrometry. At the heart of a renaissance in lipid biochemistry, systems biology is being u...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio0909-602

    authors: Brown HA,Murphy RC

    更新日期:2009-09-01 00:00:00

  • Sensing cellular stress through STIM proteins.

    abstract::In response to decreasing Ca2+ levels in the endoplasmic reticulum, STIM proteins couple with Orai channels in the plasma membrane, leading to Ca2+ influx into the cell. In addition to Ca2+-related endoplasmic reticulum stress, STIM proteins are emerging as general stress sensors that react to multiple stress signals ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.619

    authors: Soboloff J,Madesh M,Gill DL

    更新日期:2011-07-18 00:00:00

  • Mammalian circadian signaling networks and therapeutic targets.

    abstract::Virtually all cells in the body have an intracellular clockwork based on a negative feedback mechanism. The circadian timekeeping system in mammals is a hierarchical multi-oscillator network, with the suprachiasmatic nuclei (SCN) acting as the central pacemaker. The SCN synchronizes to daily light-dark cycles and coor...

    journal_title:Nature chemical biology

    pub_type: 杂志文章,评审

    doi:10.1038/nchembio.2007.37

    authors: Liu AC,Lewis WG,Kay SA

    更新日期:2007-10-01 00:00:00

  • Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli.

    abstract::Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by adjusting the osmolality of their cytoplasm. To obtain insights into the underlying metabolic adaptations, we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using nontargeted mass...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1437

    authors: Sévin DC,Sauer U

    更新日期:2014-04-01 00:00:00

  • Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.

    abstract::Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1156

    authors: Theofilopoulos S,Wang Y,Kitambi SS,Sacchetti P,Sousa KM,Bodin K,Kirk J,Saltó C,Gustafsson M,Toledo EM,Karu K,Gustafsson JÅ,Steffensen KR,Ernfors P,Sjövall J,Griffiths WJ,Arenas E

    更新日期:2013-02-01 00:00:00

  • How proteins bind macrocycles.

    abstract::The potential utility of synthetic macrocycles (MCs) as drugs, particularly against low-druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of MCs for good target protein-binding activity or bioavailability. To address this kno...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1584

    authors: Villar EA,Beglov D,Chennamadhavuni S,Porco JA Jr,Kozakov D,Vajda S,Whitty A

    更新日期:2014-09-01 00:00:00

  • Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides.

    abstract::The lasso peptide microcin J25 is known to hijack the siderophore receptor FhuA for initiating internalization. Here, we provide what is to our knowledge the first structural evidence on the recognition mechanism, and our biochemical data show that another closely related lasso peptide cannot interact with FhuA. Our w...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1499

    authors: Mathavan I,Zirah S,Mehmood S,Choudhury HG,Goulard C,Li Y,Robinson CV,Rebuffat S,Beis K

    更新日期:2014-05-01 00:00:00

  • The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans.

    abstract::Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. eleg...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio791

    authors: Kokel D,Li Y,Qin J,Xue D

    更新日期:2006-06-01 00:00:00

  • Optogenetic control of kinetochore function.

    abstract::Kinetochores act as hubs for multiple activities during cell division, including microtubule interactions and spindle checkpoint signaling. Each kinetochore can act autonomously, and activities change rapidly as proteins are recruited to, or removed from, kinetochores. Understanding this dynamic system requires tools ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2456

    authors: Zhang H,Aonbangkhen C,Tarasovetc EV,Ballister ER,Chenoweth DM,Lampson MA

    更新日期:2017-10-01 00:00:00

  • Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.

    abstract::Studies of gene function and molecular mechanisms in Plasmodium falciparum are hampered by difficulties in characterizing and measuring phenotypic differences between individual parasites. We screened seven parasite lines for differences in responses to 1,279 bioactive chemicals. Hundreds of compounds were active in i...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.215

    authors: Yuan J,Johnson RL,Huang R,Wichterman J,Jiang H,Hayton K,Fidock DA,Wellems TE,Inglese J,Austin CP,Su XZ

    更新日期:2009-10-01 00:00:00

  • Small molecule-triggered Cas9 protein with improved genome-editing specificity.

    abstract::Directly modulating the activity of genome-editing proteins has the potential to increase their specificity by reducing activity following target locus modification. We developed Cas9 nucleases that are activated by the presence of a cell-permeable small molecule by inserting an evolved 4-hydroxytamoxifen-responsive i...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1793

    authors: Davis KM,Pattanayak V,Thompson DB,Zuris JA,Liu DR

    更新日期:2015-05-01 00:00:00

  • Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine.

    abstract::Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a tar...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.492

    authors: Hagel M,Niu D,St Martin T,Sheets MP,Qiao L,Bernard H,Karp RM,Zhu Z,Labenski MT,Chaturvedi P,Nacht M,Westlin WF,Petter RC,Singh J

    更新日期:2011-01-01 00:00:00

  • Visualizing the secondary and tertiary architectural domains of lncRNA RepA.

    abstract::Long noncoding RNAs (lncRNAs) are important for gene expression, but little is known about their structures. RepA is a 1.6-kb mouse lncRNA comprising the same sequence as the 5' region of Xist, including A and F repeats. It has been proposed to facilitate the initiation and spread of X-chromosome inactivation, althoug...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2272

    authors: Liu F,Somarowthu S,Pyle AM

    更新日期:2017-03-01 00:00:00

  • Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit.

    abstract::Many protein kinases are key nodal signaling molecules that regulate a wide range of cellular functions. These functions may require complex spatiotemporal regulation of kinase activities. Here, we show that protein kinase A (PKA), Ca(2+) and cyclic AMP (cAMP) oscillate in sync in insulin-secreting MIN6 beta cells, fo...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.478

    authors: Ni Q,Ganesan A,Aye-Han NN,Gao X,Allen MD,Levchenko A,Zhang J

    更新日期:2011-01-01 00:00:00

  • Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA.

    abstract::RNA G-quadruplex (G4) structures are thought to affect biological processes, including translation and pre-mRNA splicing, but it is not possible at present to demonstrate that they form naturally at specific sequences in long functional RNA molecules. We developed a new strategy, footprinting of long 7-deazaguanine-su...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2228

    authors: Weldon C,Behm-Ansmant I,Hurley LH,Burley GA,Branlant C,Eperon IC,Dominguez C

    更新日期:2017-01-01 00:00:00

  • Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis.

    abstract::Nitrite represents a bioactive reservoir of nitric oxide (NO) that may modulate vasodilation, respiration and cytoprotection after ischemia-reperfusion injury. Although nitrite formation is thought to occur via reaction of NO with oxygen, this third-order reaction cannot compete kinetically with the reaction of NO wit...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio813

    authors: Shiva S,Wang X,Ringwood LA,Xu X,Yuditskaya S,Annavajjhala V,Miyajima H,Hogg N,Harris ZL,Gladwin MT

    更新日期:2006-09-01 00:00:00

  • Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine.

    abstract::Nitric oxide (NO) signaling through the formation of cGMP is well established; however, there seems to be an increasing role for cGMP-independent NO signaling. Although key molecular details remain unanswered, S-nitrosation represents an example of cGMP-independent NO signaling. This modification has garnered recent a...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio720

    authors: Mitchell DA,Marletta MA

    更新日期:2005-08-01 00:00:00

  • Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges.

    abstract::Naturally produced polybrominated diphenyl ethers (PBDEs) pervade the marine environment and structurally resemble toxic man-made brominated flame retardants. PBDEs bioaccumulate in marine animals and are likely transferred to the human food chain. However, the biogenic basis for PBDE production in one of their most p...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2330

    authors: Agarwal V,Blanton JM,Podell S,Taton A,Schorn MA,Busch J,Lin Z,Schmidt EW,Jensen PR,Paul VJ,Biggs JS,Golden JW,Allen EE,Moore BS

    更新日期:2017-05-01 00:00:00

  • Suppressors of superoxide production from mitochondrial complex III.

    abstract::Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species, which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies, but its role remains controversial. Using high-throughput ...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.1910

    authors: Orr AL,Vargas L,Turk CN,Baaten JE,Matzen JT,Dardov VJ,Attle SJ,Li J,Quackenbush DC,Goncalves RL,Perevoshchikova IV,Petrassi HM,Meeusen SL,Ainscow EK,Brand MD

    更新日期:2015-11-01 00:00:00

  • A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines.

    abstract::More than 30 years ago, a calcium-dependent enzyme activity was described that generates N-acyl phosphatidylethanolamines (NAPEs), which are precursors for N-acyl ethanolamine (NAE) lipid transmitters, including the endocannabinoid anandamide. The identity of this calcium-dependent N-acyltransferase (Ca-NAT) has remai...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.2127

    authors: Ogura Y,Parsons WH,Kamat SS,Cravatt BF

    更新日期:2016-09-01 00:00:00

  • Deciphering the transcriptional regulatory logic of amino acid metabolism.

    abstract::Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and g...

    journal_title:Nature chemical biology

    pub_type: 杂志文章

    doi:10.1038/nchembio.710

    authors: Cho BK,Federowicz S,Park YS,Zengler K,Palsson BØ

    更新日期:2011-11-13 00:00:00