Light Sheet Microscopy Using FITC-Albumin Followed by Immunohistochemistry of the Same Rehydrated Brains Reveals Ischemic Brain Injury and Early Microvascular Remodeling.

Abstract:

:Until recently, the visualization of cerebral microvessels was hampered by the fact that only short segments of vessels could be evaluated in brain sections by histochemistry. These limitations have been overcome by light sheet microscopy, which allows the 3D analysis of microvasculature in cleared brains. A major limitation of light sheet microscopy is that antibodies do not sufficiently penetrate cleared brains. We herein describe a technique of reverse clearing and rehydration, which after microvascular network analysis allows brain sectioning and immunohistochemistry employing a broad set of antibodies. Performing light sheet microscopy on brains of mice exposed to intraluminal middle cerebral artery occlusion (MCAO), we show that in the early phase of microvascular remodeling branching point density was markedly reduced, more strongly than microvascular length. Brain infarcts in light sheet microscopy were sharply demarcated by their autofluorescence signal, closely corresponding to brain infarcts revealed by Nissl staining. Neuronal survival, leukocyte infiltration, and astrocytic reactivity could be evaluated by immunohistochemistry in rehydrated brains, as shown in direct comparisons with non-cleared brains. Immunohistochemistry revealed microthrombi in ischemic microvessels that were likely responsible for the marked branching point loss. The balance between microvascular thrombosis and remodeling warrants further studies at later time-points after stroke.

journal_name

Front Cell Neurosci

authors

Mohamud Yusuf A,Hagemann N,Schulten S,Rausch O,Wagner K,Hussner T,Qi Y,Totzeck M,Kleinschnitz C,Squire A,Gunzer M,Hermann DM

doi

10.3389/fncel.2020.625513

subject

Has Abstract

pub_date

2021-01-05 00:00:00

pages

625513

issn

1662-5102

journal_volume

14

pub_type

杂志文章
  • Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis.

    abstract::The immune system provides protection in the CNS via resident microglial cells and those that traffic into it in the course of pathological challenges. These populations of cells are key players in modulating immune functions that are involved in disease outcomes. In this review, we briefly summarize and highlight the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00355

    authors: Fani Maleki A,Rivest S

    更新日期:2019-07-31 00:00:00

  • Dopamine-Induced Changes in Gαolf Protein Levels in Striatonigral and Striatopallidal Medium Spiny Neurons Underlie the Genesis of l-DOPA-Induced Dyskinesia in Parkinsonian Mice.

    abstract::The dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), exerts powerful therapeutic effects but eventually generates l-DOPA-induced dyskinesia (LID) in patients with Parkinson's disease (PD). LID has a close link with deregulation of striatal dopamine/cAMP signaling, which is integrated by medium spiny neurons ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00026

    authors: Morigaki R,Okita S,Goto S

    更新日期:2017-02-10 00:00:00

  • Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00434

    authors: Natale G,Lenzi P,Lazzeri G,Falleni A,Biagioni F,Ryskalin L,Fornai F

    更新日期:2015-11-06 00:00:00

  • Inhibition of COX2/PGD2-Related Autophagy Is Involved in the Mechanism of Brain Injury in T2DM Rat.

    abstract::The present study was designed to observe the effect of COX2/PGD2-related autophagy on brain injury in type 2 diabetes rats. The histopathology was detected by haematoxylin-eosin staining. The learning and memory functions were evaluated by Morris water maze. The levels of insulin and PGD2 were measured by enzyme-link...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00068

    authors: Yang Y,Chen Q,Zhao Q,Luo Y,Xu Y,Du W,Wang H,Li H,Yang L,Hu C,Zhang J,Li Y,Xia H,Chen Z,Ma J,Tian X,Yang J

    更新日期:2019-02-27 00:00:00

  • Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases.

    abstract::Neurodegenerative diseases in general and specifically late-onset Alzheimer's disease (LOAD) involve a genetically complex and largely obscure ensemble of causative and risk factors accompanied by complex feedback responses. The advent of "high-throughput" transcriptome investigation technologies such as microarray an...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00089

    authors: Guffanti A,Simchovitz A,Soreq H

    更新日期:2014-03-27 00:00:00

  • Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice.

    abstract::Central pattern generators (CPGs) in the thoracolumbar spinal cord generate the basic hindlimb locomotor pattern. The locomotor CPG integrates descending commands and sensory information from the periphery to activate, modulate and halt the rhythmic program. General CPG function and response to sensory perturbations a...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00452

    authors: Li EZ,Garcia-Ramirez DL,Dougherty KJ

    更新日期:2019-10-09 00:00:00

  • The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain.

    abstract::To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic in...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00436

    authors: Yang Z,Tan Q,Cheng D,Zhang L,Zhang J,Gu EW,Fang W,Lu X,Liu X

    更新日期:2018-11-21 00:00:00

  • The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier.

    abstract::Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have est...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00352

    authors: Neuhaus W,Gaiser F,Mahringer A,Franz J,Riethmüller C,Förster C

    更新日期:2014-10-28 00:00:00

  • NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence.

    abstract::The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter (NKCC1) is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brai...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00200

    authors: Magalhães AC,Rivera C

    更新日期:2016-08-17 00:00:00

  • Corrigendum: Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination.

    abstract::[This corrects the article DOI: 10.3389/fncel.2017.00013.]. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fncel.2019.00303

    authors: So JH,Huang C,Ge M,Cai G,Zhang L,Lu Y,Mu Y

    更新日期:2019-07-09 00:00:00

  • Early Impairment of Synaptic and Intrinsic Excitability in Mice Expressing ALS/Dementia-Linked Mutant UBQLN2.

    abstract::Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are believed to represent the different outcomes of a common pathogenic mechanism. However, while researchers have intensely studied the involvement of motor neurons in the ALS/FTD syndrome, very little is known about the function of hippocampal neu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00216

    authors: Radzicki D,Liu E,Deng HX,Siddique T,Martina M

    更新日期:2016-09-20 00:00:00

  • Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    abstract::Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00317

    authors: Sabado V,Vienne L,Nagoshi E

    更新日期:2017-10-12 00:00:00

  • Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice.

    abstract::The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00369

    authors: Kelly EA,Russo AS,Jackson CD,Lamantia CE,Majewska AK

    更新日期:2015-09-22 00:00:00

  • Calcium Dynamics in Dendrites of Hippocampal CA1 Interneurons in Awake Mice.

    abstract::Hippocampal inhibitory interneurons exhibit a large diversity of dendritic Ca2+ mechanisms that are involved in the induction of Hebbian and anti-Hebbian synaptic plasticity. High resolution imaging techniques allowed examining somatic Ca2+ signals and, accordingly, the recruitment of hippocampal interneurons in awake...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00098

    authors: Francavilla R,Villette V,Martel O,Topolnik L

    更新日期:2019-03-15 00:00:00

  • Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    abstract::Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippoc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00102

    authors: Orellana JA,Moraga-Amaro R,Díaz-Galarce R,Rojas S,Maturana CJ,Stehberg J,Sáez JC

    更新日期:2015-04-02 00:00:00

  • Increased Excitability and Reduced Excitatory Synaptic Input Into Fast-Spiking CA2 Interneurons After Enzymatic Attenuation of Extracellular Matrix.

    abstract::The neural extracellular matrix (ECM) is enriched with hyaluronic acid, chondroitin sulfate proteoglycans (CSPGs) and the glycoprotein tenascin-R, which play important roles in synaptic plasticity, as shown by studies of the CA1 region of the hippocampus. However, ECM molecules are strongly expressed in the CA2 region...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00149

    authors: Hayani H,Song I,Dityatev A

    更新日期:2018-05-30 00:00:00

  • Enhanced Synaptic Activity and Epileptiform Events in the Embryonic KCC2 Deficient Hippocampus.

    abstract::The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for protein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi of wild-type (Kcc2(+/+)) and Kcc2 deficient (K...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2011.00023

    authors: Khalilov I,Chazal G,Chudotvorova I,Pellegrino C,Corby S,Ferrand N,Gubkina O,Nardou R,Tyzio R,Yamamoto S,Jentsch TJ,Hübner CA,Gaiarsa JL,Ben-Ari Y,Medina I

    更新日期:2011-11-01 00:00:00

  • Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    abstract::Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never bee...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00004

    authors: Tatulli G,Mitro N,Cannata SM,Audano M,Caruso D,D'Arcangelo G,Lettieri-Barbato D,Aquilano K

    更新日期:2018-01-17 00:00:00

  • Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia.

    abstract::Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00223

    authors: Lu H,Song X,Wang F,Wang G,Wu Y,Wang Q,Wang Y,Yang GY,Zhang Z

    更新日期:2016-09-30 00:00:00

  • Synaptic vesicle tethering and the CaV2.2 distal C-terminal.

    abstract::Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) whi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00071

    authors: Wong FK,Nath AR,Chen RH,Gardezi SR,Li Q,Stanley EF

    更新日期:2014-03-07 00:00:00

  • Modulation of adult-born neurons in the inflamed hippocampus.

    abstract::Throughout life new neurons are continuously added to the hippocampal circuitry involved with spatial learning and memory. These new cells originate from neural precursors in the subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate into neural networks encoding spatial and contextu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00145

    authors: Belarbi K,Rosi S

    更新日期:2013-09-06 00:00:00

  • Oligodendrocytes in a Nutshell.

    abstract::Oligodendrocytes are the myelinating cells of the central nervous system (CNS). While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, cap...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00340

    authors: Michalski JP,Kothary R

    更新日期:2015-09-01 00:00:00

  • Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala.

    abstract::It has been shown that matrix metalloproteinase 9 (MMP-9) is required for synaptic plasticity, learning and memory. In particular, MMP-9 involvement in long-term potentiation (LTP, the model of synaptic plasticity) in the hippocampus and prefrontal cortex has previously been demonstrated. Recent data suggest the role ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00073

    authors: Gorkiewicz T,Balcerzyk M,Kaczmarek L,Knapska E

    更新日期:2015-03-11 00:00:00

  • Anti-apoptotic BCL-2 family proteins in acute neural injury.

    abstract::Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00281

    authors: Anilkumar U,Prehn JH

    更新日期:2014-09-30 00:00:00

  • Identification and function of long non-coding RNA.

    abstract::Long non-coding (lnc) RNAs are defined as non-protein coding RNAs distinct from housekeeping RNAs such as tRNAs, rRNAs, and snRNAs, and independent from small RNAs with specific molecular processing machinery such as micro- or piwi-RNAs. Recent studies of lncRNAs across different species have revealed a diverse popula...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00168

    authors: Ernst C,Morton CC

    更新日期:2013-10-02 00:00:00

  • Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer's disease: a pilot study.

    abstract::Amyloid peptide is able to promote the activation of microglia and astrocytes in Alzheimer's disease (AD), and this stimulates the production of pro-inflammatory cytokines. Inflammation contributes to the process of neurodegeneration and therefore is a key factor in the development of AD. Some of the most important pr...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00148

    authors: Toral-Rios D,Franco-Bocanegra D,Rosas-Carrasco O,Mena-Barranco F,Carvajal-García R,Meraz-Ríos MA,Campos-Peña V

    更新日期:2015-05-18 00:00:00

  • D-serine as a gliotransmitter and its roles in brain development and disease.

    abstract::The development of new techniques to study glial cells has revealed that they are active participants in the development of functional neuronal circuits. Calcium imaging studies demonstrate that glial cells actively sense and respond to neuronal activity. Glial cells can produce and release neurotransmitter-like molec...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00039

    authors: Van Horn MR,Sild M,Ruthazer ES

    更新日期:2013-04-23 00:00:00

  • Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    abstract::Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adult...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00043

    authors: Rosskothen-Kuhl N,Hildebrandt H,Birkenhäger R,Illing RB

    更新日期:2018-02-22 00:00:00

  • Failure to Deliver and Translate-New Insights into RNA Dysregulation in ALS.

    abstract::Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease affecting both upper and lower motor neurons. The molecular mechanisms underlying disease pathogenesis remain largely unknown. Multiple genetic loci including genes involved in proteostasis and ribostasis have been linked to ALS p...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2017.00243

    authors: Coyne AN,Zaepfel BL,Zarnescu DC

    更新日期:2017-08-17 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00