Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

Abstract:

:Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

journal_name

Front Cell Neurosci

authors

Orellana JA,Moraga-Amaro R,Díaz-Galarce R,Rojas S,Maturana CJ,Stehberg J,Sáez JC

doi

10.3389/fncel.2015.00102

subject

Has Abstract

pub_date

2015-04-02 00:00:00

pages

102

issn

1662-5102

journal_volume

9

pub_type

杂志文章
  • Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala.

    abstract::It has been shown that matrix metalloproteinase 9 (MMP-9) is required for synaptic plasticity, learning and memory. In particular, MMP-9 involvement in long-term potentiation (LTP, the model of synaptic plasticity) in the hippocampus and prefrontal cortex has previously been demonstrated. Recent data suggest the role ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00073

    authors: Gorkiewicz T,Balcerzyk M,Kaczmarek L,Knapska E

    更新日期:2015-03-11 00:00:00

  • Thyroid hormone treated astrocytes induce maturation of cerebral cortical neurons through modulation of proteoglycan levels.

    abstract::Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4) play crucial role in several steps of brain morphogenesis including proliferation of progenit...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00125

    authors: Dezonne RS,Stipursky J,Araujo AP,Nones J,Pavão MS,Porcionatto M,Gomes FC

    更新日期:2013-08-12 00:00:00

  • Patterns of Cerebellar Gray Matter Atrophy Across Alzheimer's Disease Progression.

    abstract::The role of the cerebellum in cognitive function has been broadly investigated in the last decades from an anatomical, clinical, and functional point of view and new evidence points toward a significant contribution of the posterior lobes of the cerebellum in cognition in Alzheimer's disease (AD). In the present work ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00430

    authors: Toniolo S,Serra L,Olivito G,Marra C,Bozzali M,Cercignani M

    更新日期:2018-11-20 00:00:00

  • Inflammogenesis of Secondary Spinal Cord Injury.

    abstract::Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2016.00098

    authors: Anwar MA,Al Shehabi TS,Eid AH

    更新日期:2016-04-13 00:00:00

  • Corrigendum: Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination.

    abstract::[This corrects the article DOI: 10.3389/fncel.2017.00013.]. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fncel.2019.00303

    authors: So JH,Huang C,Ge M,Cai G,Zhang L,Lu Y,Mu Y

    更新日期:2019-07-09 00:00:00

  • NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence.

    abstract::The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter (NKCC1) is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brai...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00200

    authors: Magalhães AC,Rivera C

    更新日期:2016-08-17 00:00:00

  • Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathw

    abstract::Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstre...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00214

    authors: Farkas I,Vastagh C,Farkas E,Bálint F,Skrapits K,Hrabovszky E,Fekete C,Liposits Z

    更新日期:2016-09-12 00:00:00

  • Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    abstract::Gamma aminobutric acid (GABA) is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00120

    authors: Kaczor P,Rakus D,Mozrzymas JW

    更新日期:2015-04-09 00:00:00

  • J protein mutations and resulting proteostasis collapse.

    abstract::Despite a century of intensive investigation the effective treatment of protein aggregation diseases remains elusive. Ordinarily, molecular chaperones ensure that proteins maintain their functional conformation. The appearance of misfolded proteins that aggregate implies the collapse of the cellular chaperone quality ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00191

    authors: Koutras C,Braun JE

    更新日期:2014-07-08 00:00:00

  • Nanobodies as modulators of inflammation: potential applications for acute brain injury.

    abstract::Nanobodies are single domain antibodies derived from llama heavy-chain only antibodies (HCAbs). They represent a new generation of biologicals with unique properties: nanobodies show excellent tissue distribution, high temperature and pH stability, are easy to produce recombinantly and can readily be converted into di...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00344

    authors: Rissiek B,Koch-Nolte F,Magnus T

    更新日期:2014-10-21 00:00:00

  • Automated measurement of fast mitochondrial transport in neurons.

    abstract::There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here w...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00435

    authors: Miller KE,Liu XA,Puthanveettil SV

    更新日期:2015-11-03 00:00:00

  • The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function.

    abstract::NMDARs, the Ca2+ permeable channels, play central roles in synaptic plasticity, brain development, learning, and memory. NMDAR binding partners and associated signaling has been extensively studied in synapse-to-nucleus communications. However, whether NMDARs could directly regulate synapse-to-nucleus communications i...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00334

    authors: Zhou L,Duan J

    更新日期:2018-10-02 00:00:00

  • Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity.

    abstract::Slc4a10 is a Na(+)-coupled Cl(-)-HCO3 (-) exchanger, which is expressed in principal and inhibitory neurons as well as in choroid plexus epithelial cells of the brain. Slc4a10 knockout (KO) mice have collapsed brain ventricles and display an increased seizure threshold, while heterozygous deletions in man have been as...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00223

    authors: Sinning A,Liebmann L,Hübner CA

    更新日期:2015-06-16 00:00:00

  • Dendritic Spikes in Sensory Perception.

    abstract::What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem fro...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2017.00029

    authors: Manita S,Miyakawa H,Kitamura K,Murayama M

    更新日期:2017-02-15 00:00:00

  • Glia in the cytokine-mediated onset of depression: fine tuning the immune response.

    abstract::Major depressive disorder (MDD) is a mood disorder of multifactorial origin affecting millions of people worldwide. The alarming estimated rates of prevalence and relapse make it a global public health concern. Moreover, the current setback of available antidepressants in the clinical setting is discouraging. Therefor...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00268

    authors: Jo WK,Zhang Y,Emrich HM,Dietrich DE

    更新日期:2015-07-10 00:00:00

  • Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    abstract::The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpos...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00200

    authors: Narla C,Dunn HA,Ferguson SS,Poulter MO

    更新日期:2015-05-28 00:00:00

  • Androstenediol Reduces Demyelination-Induced Axonopathy in the Rat Corpus Callosum: Impact on Microglial Polarization.

    abstract::Aims: We have previously shown that the neurosteroid androstenediol (ADIOL) promotes remyelination following gliotoxin-induced demyelination. However, the impact of this ADIOL on axonal recovery is not yet known. In the present study, we investigated the impact of ADIOL on axonal integrity following a focal demyelinat...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00049

    authors: Kalakh S,Mouihate A

    更新日期:2017-02-23 00:00:00

  • In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups.

    abstract::Optogenetic and pharmacogenetic techniques have been effective to analyze the role of neuronal activity in controlling oligodendroglia lineage cells in behaving juvenile and adult mice. This kind of studies is also of high interest during early postnatal (PN) development since important changes in oligodendroglia dyna...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00477

    authors: Ortolani D,Manot-Saillet B,Orduz D,Ortiz FC,Angulo MC

    更新日期:2018-12-06 00:00:00

  • Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder.

    abstract::Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD como...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00482

    authors: Shen HY,Huang N,Reemmer J,Xiao L

    更新日期:2018-12-07 00:00:00

  • Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat.

    abstract::To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00182

    authors: Hercher D,Kerbl M,Schuh CMAP,Heinzel J,Gal L,Stainer M,Schmidhammer R,Hausner T,Redl H,Nógrádi A,Hacobian A

    更新日期:2019-05-08 00:00:00

  • Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan.

    abstract::Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2010.00016

    authors: Pinto JG,Hornby KR,Jones DG,Murphy KM

    更新日期:2010-06-10 00:00:00

  • Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies.

    abstract::Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic "genetic" etiology or a symptomatic "acquired" component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium ch...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00587

    authors: van Loo KMJ,Becker AJ

    更新日期:2020-01-14 00:00:00

  • A Model of Germinal Matrix Hemorrhage in Preterm Rat Pups.

    abstract::Germinal matrix hemorrhage (GMH) is a serious complication in extremely preterm infants associated with neurological deficits and mortality. The purpose of the present study was to develop and characterize a grade III and IV GMH model in postnatal day 5 (P5) rats, the equivalent of preterm human brain maturation. P5 W...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.535320

    authors: Jinnai M,Koning G,Singh-Mallah G,Jonsdotter A,Leverin AL,Svedin P,Nair S,Takeda S,Wang X,Mallard C,Ek CJ,Rocha-Ferreira E,Hagberg H

    更新日期:2020-12-03 00:00:00

  • The Molecular Determinants of Mitochondrial Membrane Contact With ER, Lysosomes and Peroxisomes in Neuronal Physiology and Pathology.

    abstract::Membrane tethering is an important communication method for membrane-packaged organelles. Mitochondria are organelles with a bilayer membrane, and the membrane contact between mitochondria and other organelles is indispensable for maintaining cellular homeostasis. Increased levels of molecular determinants that mediat...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00194

    authors: Liao Y,Dong Y,Cheng J

    更新日期:2020-08-07 00:00:00

  • A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information.

    abstract::Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by provi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.600537

    authors: Egger V,Diamond JS

    更新日期:2020-11-05 00:00:00

  • Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution.

    abstract::The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00471

    authors: Talaei S,Schnee ME,Aaron KA,Ricci AJ

    更新日期:2019-10-30 00:00:00

  • Frequency dependence of CA3 spike phase response arising from h-current properties.

    abstract::The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00263

    authors: Borel M,Guadagna S,Jang HJ,Kwag J,Paulsen O

    更新日期:2013-12-25 00:00:00

  • Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures.

    abstract::Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00180

    authors: Caviedes A,Varas-Godoy M,Lafourcade C,Sandoval S,Bravo-Alegria J,Kaehne T,Massmann A,Figueroa JP,Nualart F,Wyneken U

    更新日期:2017-07-04 00:00:00

  • Bone marrow-derived mononuclear cells do not exert acute neuroprotection after stroke in spontaneously hypertensive rats.

    abstract::Bone marrow-derived mononuclear cells (BM-MNCs) were shown to improve the outcome in animal stroke models and clinical pilot studies on BM-MNCs for stroke patients were already conducted. However, relevant aspects of pre-clinical evaluation, such as the use of animals with comorbidities and dose-response studies, were...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00288

    authors: Minnerup J,Wagner DC,Strecker JK,Pösel C,Sevimli-Abdis S,Schmidt A,Schilling M,Boltze J,Diederich K,Schäbitz WR

    更新日期:2014-01-08 00:00:00

  • Early Retinal Defects in Fmr1-/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    abstract::Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we rec...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00096

    authors: Perche O,Felgerolle C,Ardourel M,Bazinet A,Pâris A,Rossignol R,Meyer-Dilhet G,Mausset-Bonnefont AL,Hébert B,Laurenceau D,Montécot-Dubourg C,Menuet A,Bizot JC,Pichon J,Ranchon-Cole I,Briault S

    更新日期:2018-04-06 00:00:00