Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

Abstract:

:Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

journal_name

Front Cell Neurosci

authors

Tatulli G,Mitro N,Cannata SM,Audano M,Caruso D,D'Arcangelo G,Lettieri-Barbato D,Aquilano K

doi

10.3389/fncel.2018.00004

subject

Has Abstract

pub_date

2018-01-17 00:00:00

pages

4

issn

1662-5102

journal_volume

12

pub_type

杂志文章
  • Morphological and functional aspects of progenitors perturbed in cortical malformations.

    abstract::In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphologic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00030

    authors: Bizzotto S,Francis F

    更新日期:2015-02-12 00:00:00

  • Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells.

    abstract::Ischemic stroke is a debilitating disease for which there are currently no effective treatments besides the clot-buster, tissue plasminogen activator (t-PA), which is administered to less than 10% of patients due to a limited (4.5 h) time window of efficacy. Thus, there is an urgent need for novel therapies that can p...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00066

    authors: Broughton BR,Lim R,Arumugam TV,Drummond GR,Wallace EM,Sobey CG

    更新日期:2013-01-17 00:00:00

  • A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae).

    abstract::The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00212

    authors: Andersson MN,Corcoran JA,Zhang DD,Hillbur Y,Newcomb RD,Löfstedt C

    更新日期:2016-09-07 00:00:00

  • Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats.

    abstract::Orexin and melanin-concentrating hormone (MCH) neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00070

    authors: Linehan V,Hirasawa M

    更新日期:2018-03-13 00:00:00

  • Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis.

    abstract::The immune system provides protection in the CNS via resident microglial cells and those that traffic into it in the course of pathological challenges. These populations of cells are key players in modulating immune functions that are involved in disease outcomes. In this review, we briefly summarize and highlight the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00355

    authors: Fani Maleki A,Rivest S

    更新日期:2019-07-31 00:00:00

  • Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.581907

    authors: McAlary L,Chew YL,Lum JS,Geraghty NJ,Yerbury JJ,Cashman NR

    更新日期:2020-11-04 00:00:00

  • Spontaneous and Acetylcholine Evoked Calcium Transients in the Developing Mouse Utricle.

    abstract::Spontaneous calcium transients are present during early postnatal development in the mouse retina and cochlea, and play an important role in maturation of the sensory organs and neural circuits in the central nervous system (CNS). It is not known whether similar calcium transients occur during postnatal development in...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00186

    authors: Holman HA,Poppi LA,Frerck M,Rabbitt RD

    更新日期:2019-05-07 00:00:00

  • S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement.

    abstract::Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00279

    authors: Santos G,Barateiro A,Brites D,Fernandes A

    更新日期:2020-09-04 00:00:00

  • Visualization of cyclic nucleotide dynamics in neurons.

    abstract::The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in si...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00395

    authors: Gorshkov K,Zhang J

    更新日期:2014-12-04 00:00:00

  • DL-3n-Butylphthalide Improves Blood-Brain Barrier Integrity in Rat After Middle Cerebral Artery Occlusion.

    abstract::Objective: DL-3n-butylphthalide (NBP) has beneficial effects in different stages of ischemic stroke. Our previous studies have demonstrated that NBP promoted angiogenesis in the perifocal region of the ischemic brain. However, the molecular mechanism of NBP for blood-brain barrier protection in acute ischemic stroke w...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.610714

    authors: Mamtilahun M,Wei Z,Qin C,Wang Y,Tang Y,Shen FX,Tian HL,Zhang Z,Yang GY

    更新日期:2021-01-12 00:00:00

  • Implications of glial nitric oxide in neurodegenerative diseases.

    abstract::Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00322

    authors: Yuste JE,Tarragon E,Campuzano CM,Ros-Bernal F

    更新日期:2015-08-17 00:00:00

  • Pharmacological Targeting of CSF1R Inhibits Microglial Proliferation and Aggravates the Progression of Cerebral Ischemic Pathology.

    abstract::Ischemic stroke can induce rapid activation of the microglia. It has been reported that the microglia's survival is dependent on colony-stimulating factor 1 receptor (CSF1R) signaling and that pharmacological inhibition of CSF1R leads to morphological changes in the microglia in the healthy brain. However, the impact ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00267

    authors: Hou B,Jiang C,Wang D,Wang G,Wang Z,Zhu M,Kang Y,Su J,Wei P,Ren H,Ju F

    更新日期:2020-10-16 00:00:00

  • Propofol Exposure in Early Life Induced Developmental Impairments in the Mouse Cerebellum.

    abstract::Propofol is a widely used anesthetic in the clinic while several studies have demonstrated that propofol exposure may cause neurotoxicity in the developing brain. However, the effects of early propofol exposure on cerebellar development are not well understood. Propofol (30 or 60 mg/kg) was administered to mice on pos...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00373

    authors: Xiao R,Yu D,Li X,Huang J,Jing S,Bao X,Yang T,Fan X

    更新日期:2017-11-22 00:00:00

  • Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    abstract::The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00215

    authors: Spencer WC,Deneris ES

    更新日期:2017-07-19 00:00:00

  • Differential Regulation of Adhesion and Phagocytosis of Resting and Activated Microglia by Dopamine.

    abstract::Microglia, the immune competent cells of the central nervous system (CNS), normally exist in a resting state characterized by a ramified morphology with many processes, and become activated to amoeboid morphology in response to brain injury, infection, and a variety of neuroinflammatory stimuli. Many studies focused o...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00309

    authors: Fan Y,Chen Z,Pathak JL,Carneiro AMD,Chung CY

    更新日期:2018-09-11 00:00:00

  • A Survey of Retinal Remodeling.

    abstract::Up to 15 years ago, bibliographic searches based on keywords such as "photoreceptor degeneration, inner retina" or "photoreceptor degeneration, second order neurons" returned only a handful of papers, as the field was dominated by the general assumption that retinal degeneration had direct effects on the sole populati...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00494

    authors: Strettoi E

    更新日期:2015-12-23 00:00:00

  • Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid.

    abstract::Prenatal exposure to the antiepileptic drug valproic acid (VPA) induces autism spectrum disorder (ASD) in humans and autistic-like behaviors in rodents, which makes it a good model to study the neural underpinnings of ASD. Rats prenatally exposed to VPA show profound deficits in the social domain. The altered social b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00479

    authors: Schiavi S,Iezzi D,Manduca A,Leone S,Melancia F,Carbone C,Petrella M,Mannaioni G,Masi A,Trezza V

    更新日期:2019-10-25 00:00:00

  • The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma.

    abstract::The malignancy of glioblastoma multiform (GBM), the most common and aggressive form of human brain tumors, strongly correlates with the presence of hypoxic areas, but the mechanisms controlling the hypoxia-induced aggressiveness are still unclear. GBM cells express a number of ion channels whose activity supports cell...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00467

    authors: Sforna L,Cenciarini M,Belia S,D'Adamo MC,Pessia M,Franciolini F,Catacuzzeno L

    更新日期:2015-01-15 00:00:00

  • Mild Endoplasmic Reticulum Stress Protects Against Lipopolysaccharide-Induced Astrocytic Activation and Blood-Brain Barrier Hyperpermeability.

    abstract::Recent research has revealed that uncontrolled chronic neuroinflammation is closely associated with diverse neurodegenerative diseases, by impairing blood-brain barrier (BBB) function and astrocytic reaction. Endoplasmic reticulum (ER) stress is conventionally linked to the loss of neuronal structure and function and ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00222

    authors: Wang Y,Chen Y,Zhou Q,Xu J,Qian Q,Ni P,Qian Y

    更新日期:2018-07-27 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00

  • The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system.

    abstract::The blood brain barrier (BBB) and the blood cerebrospinal fluid barrier (BCSFB) form the barriers of the brain. These barriers are essential not only for the protection of the brain, but also in regulating the exchange of cells and molecules in and out of the brain. The choroid plexus (CP) epithelial cells and the ara...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00136

    authors: Marques F,Sousa JC

    更新日期:2015-04-13 00:00:00

  • Unexpected Exacerbation of Neuroinflammatory Response After a Combined Therapy in Old Parkinsonian Mice.

    abstract::The design of therapeutic strategies that focus on the repositioning of anti-inflammatory and antioxidant drugs are a great bet to slow down the progression of neurodegenerative disorders. Despite the fact that Parkinson's disease (PD) is an age-related pathology, almost all experimental studies are carried out in you...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00451

    authors: Gil-Martínez AL,Cuenca L,Estrada C,Sánchez-Rodrigo C,Fernández-Villalba E,Herrero MT

    更新日期:2018-11-30 00:00:00

  • Mechanisms of Homeostatic Synaptic Plasticity in vivo.

    abstract::Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are man...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00520

    authors: Lee HK,Kirkwood A

    更新日期:2019-12-03 00:00:00

  • Activity dependent CAM cleavage and neurotransmission.

    abstract::Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surf...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00305

    authors: Conant K,Allen M,Lim ST

    更新日期:2015-08-11 00:00:00

  • Neural precursor cells in the ischemic brain - integration, cellular crosstalk, and consequences for stroke recovery.

    abstract::After an ischemic stroke, neural precursor cells (NPCs) proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate toward the ischemic lesion where they promote tissue remodeling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to sup...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00291

    authors: Hermann DM,Peruzzotti-Jametti L,Schlechter J,Bernstock JD,Doeppner TR,Pluchino S

    更新日期:2014-09-16 00:00:00

  • Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides.

    abstract::The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2) is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3) conjugated to the HIV transactivator of transcription (TAT) protein's cationic cell penetrating peptide (CPP) motif protected neurons in the face of toxic leve...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00471

    authors: Moutal A,François-Moutal L,Brittain JM,Khanna M,Khanna R

    更新日期:2015-01-26 00:00:00

  • A new role for P2X4 receptors as modulators of lung surfactant secretion.

    abstract::In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca(2+) influx and elevation of the intracellular Ca(2+) concentration. Recently, a new role for P2X4 r...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00171

    authors: Miklavc P,Thompson KE,Frick M

    更新日期:2013-10-08 00:00:00

  • Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system.

    abstract::Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases us...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00017

    authors: Bonnamain V,Neveu I,Naveilhan P

    更新日期:2012-04-11 00:00:00

  • Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats.

    abstract::Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypot...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00040

    authors: Walf AA,Frye CA

    更新日期:2012-12-18 00:00:00

  • Contribution of sublinear and supralinear dendritic integration to neuronal computations.

    abstract::Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00067

    authors: Tran-Van-Minh A,Cazé RD,Abrahamsson T,Cathala L,Gutkin BS,DiGregorio DA

    更新日期:2015-03-24 00:00:00