D-serine as a gliotransmitter and its roles in brain development and disease.

Abstract:

:The development of new techniques to study glial cells has revealed that they are active participants in the development of functional neuronal circuits. Calcium imaging studies demonstrate that glial cells actively sense and respond to neuronal activity. Glial cells can produce and release neurotransmitter-like molecules, referred to as gliotransmitters, that can in turn influence the activity of neurons and other glia. One putative gliotransmitter, D-serine is believed to be an endogenous co-agonist for synaptic N-methyl-D-aspartate receptors (NMDARs), modulating synaptic transmission and plasticity mediated by this receptor. The observation that D-serine levels in the mammalian brain increase during early development, suggests a possible role for this gliotransmitter in normal brain development and circuit refinement. In this review we will examine the data that D-serine and its associated enzyme serine racemase are developmentally regulated. We will consider the evidence that D-serine is actively released by glial cells and examine the studies that have implicated D-serine as a critical player involved in regulating NMDAR-mediated synaptic transmission and neuronal migration during development. Furthermore, we will consider how dysregulation of D-serine may play an important role in the etiology of neurological and psychiatric diseases.

journal_name

Front Cell Neurosci

authors

Van Horn MR,Sild M,Ruthazer ES

doi

10.3389/fncel.2013.00039

subject

Has Abstract

pub_date

2013-04-23 00:00:00

pages

39

issn

1662-5102

journal_volume

7

pub_type

杂志文章
  • Heterogeneity of the Axon Initial Segment in Interneurons and Pyramidal Cells of Rodent Visual Cortex.

    abstract::The microdomain that orchestrates action potential initiation in neurons is the axon initial segment (AIS). It has long been considered to be a rather homogeneous domain at the very proximal axon hillock with relatively stable length, particularly in cortical pyramidal cells. However, studies in other brain regions pa...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00332

    authors: Höfflin F,Jack A,Riedel C,Mack-Bucher J,Roos J,Corcelli C,Schultz C,Wahle P,Engelhardt M

    更新日期:2017-11-06 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00

  • Diversity of layer 5 projection neurons in the mouse motor cortex.

    abstract::In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolv...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00174

    authors: Oswald MJ,Tantirigama ML,Sonntag I,Hughes SM,Empson RM

    更新日期:2013-10-16 00:00:00

  • Effects of bone marrow mesenchymal stem cells (BM-MSCs) on rat pial microvascular remodeling after transient middle cerebral artery occlusion.

    abstract::Previous studies have shown that the pial microcirculation remodeling improves neurological outcome after middle cerebral artery occlusion (MCAO), accompanied by higher expression of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS), modulating in vivo angiogenesis. This study was ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00329

    authors: Lapi D,Vagnani S,Sapio D,Mastantuono T,Boscia F,Pignataro G,Penna C,Pagliaro P,Colantuoni A

    更新日期:2015-08-25 00:00:00

  • Antagonization of the Nogo-Receptor 1 Enhances Dopaminergic Fiber Outgrowth of Transplants in a Rat Model of Parkinson's Disease.

    abstract::Intrastriatal transplantation of fetal human ventral mesencephalic dopaminergic neurons is an experimental therapy for patients suffering from Parkinson's disease. The success of this approach depends on several host brain parameters including neurotrophic factors and growth inhibitors that guide survival and integrat...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00151

    authors: Seiler S,Di Santo S,Andereggen L,Widmer HR

    更新日期:2017-05-26 00:00:00

  • Failure to Deliver and Translate-New Insights into RNA Dysregulation in ALS.

    abstract::Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease affecting both upper and lower motor neurons. The molecular mechanisms underlying disease pathogenesis remain largely unknown. Multiple genetic loci including genes involved in proteostasis and ribostasis have been linked to ALS p...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2017.00243

    authors: Coyne AN,Zaepfel BL,Zarnescu DC

    更新日期:2017-08-17 00:00:00

  • Implications of glial nitric oxide in neurodegenerative diseases.

    abstract::Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00322

    authors: Yuste JE,Tarragon E,Campuzano CM,Ros-Bernal F

    更新日期:2015-08-17 00:00:00

  • Distinct Residential and Infiltrated Macrophage Populations and Their Phagocytic Function in Mild and Severe Neonatal Hypoxic-Ischemic Brain Damage.

    abstract::Neonatal brain injury, especially severe injury induced by hypoxia-ischemia (HI), causes mortality and long-term neurological impairments. Our previous study demonstrated activation of CD11b+ myeloid cells, including residential microglial cells (MGs) and infiltrating monocyte-derived macrophages (MDMs) in a murine mo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00244

    authors: Min Y,Yan L,Wang Q,Wang F,Hua H,Yuan Y,Jin H,Zhang M,Zhao Y,Yang J,Jiang X,Yang Y,Li F

    更新日期:2020-08-10 00:00:00

  • Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00434

    authors: Natale G,Lenzi P,Lazzeri G,Falleni A,Biagioni F,Ryskalin L,Fornai F

    更新日期:2015-11-06 00:00:00

  • Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis.

    abstract::Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory fu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00279

    authors: D'Ambrosi N,Rossi S,Gerbino V,Cozzolino M

    更新日期:2014-09-08 00:00:00

  • Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    abstract::Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippoc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00102

    authors: Orellana JA,Moraga-Amaro R,Díaz-Galarce R,Rojas S,Maturana CJ,Stehberg J,Sáez JC

    更新日期:2015-04-02 00:00:00

  • Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors.

    abstract::Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids' synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00162

    authors: Falomir-Lockhart LJ,Cavazzutti GF,Giménez E,Toscani AM

    更新日期:2019-04-24 00:00:00

  • J protein mutations and resulting proteostasis collapse.

    abstract::Despite a century of intensive investigation the effective treatment of protein aggregation diseases remains elusive. Ordinarily, molecular chaperones ensure that proteins maintain their functional conformation. The appearance of misfolded proteins that aggregate implies the collapse of the cellular chaperone quality ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00191

    authors: Koutras C,Braun JE

    更新日期:2014-07-08 00:00:00

  • Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy.

    abstract::Risk of hemorrhagic transformation, incomplete reperfusion, neurotoxicity, and a short treatment time window comprises major challenges for tissue plasminogen activator (tPA) thrombolytic stroke therapy. Improving tPA therapy has become one of the highest priorities in the stroke field. This mini review article focuse...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00397

    authors: Jiang Y,Fan X,Yu Z,Liao Z,Wang XS,van Leyen K,Sun X,Lo EH,Wang X

    更新日期:2015-10-14 00:00:00

  • The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1.

    abstract::After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the tra...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00093

    authors: Pellegatta M,Taveggia C

    更新日期:2019-03-20 00:00:00

  • A Guide to Single-Cell Transcriptomics in Adult Rodent Brain: The Medium Spiny Neuron Transcriptome Revisited.

    abstract::Recent advances in single-cell technologies are paving the way to a comprehensive understanding of the cellular complexity in the brain. Protocols for single-cell transcriptomics combine a variety of sophisticated methods for the purpose of isolating the heavily interconnected and heterogeneous neuronal cell types in ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00159

    authors: Ho H,Both M,Siniard A,Sharma S,Notwell JH,Wallace M,Leone DP,Nguyen A,Zhao E,Lee H,Zwilling D,Thompson KR,Braithwaite SP,Huentelman M,Portmann T

    更新日期:2018-06-15 00:00:00

  • Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof.

    abstract::There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose met...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00274

    authors: McDonald T,Puchowicz M,Borges K

    更新日期:2018-08-31 00:00:00

  • Rethinking schizophrenia in the context of normal neurodevelopment.

    abstract::The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to co...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00060

    authors: Catts VS,Fung SJ,Long LE,Joshi D,Vercammen A,Allen KM,Fillman SG,Rothmond DA,Sinclair D,Tiwari Y,Tsai SY,Weickert TW,Shannon Weickert C

    更新日期:2013-05-15 00:00:00

  • Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels.

    abstract::Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00091

    authors: Kratzer S,Mattusch C,Metzger MW,Dedic N,Noll-Hussong M,Kafitz KW,Eder M,Deussing JM,Holsboer F,Kochs E,Rammes G

    更新日期:2013-07-19 00:00:00

  • The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function.

    abstract::NMDARs, the Ca2+ permeable channels, play central roles in synaptic plasticity, brain development, learning, and memory. NMDAR binding partners and associated signaling has been extensively studied in synapse-to-nucleus communications. However, whether NMDARs could directly regulate synapse-to-nucleus communications i...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00334

    authors: Zhou L,Duan J

    更新日期:2018-10-02 00:00:00

  • Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.

    abstract::The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT n...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00215

    authors: Spencer WC,Deneris ES

    更新日期:2017-07-19 00:00:00

  • FKBP5 Exacerbates Impairments in Cerebral Ischemic Stroke by Inducing Autophagy via the AKT/FOXO3 Pathway.

    abstract::Cerebral ischemic stroke is regarded as one of the most serious diseases in the human central nervous system. The secondary ischemia and reperfusion (I/R) injury increased the difficulty of treatment. Moreover, the latent molecular regulating mechanism in I/R injury is still unclear. Based on our previous clinical stu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00193

    authors: Yu S,Yu M,Bu Z,He P,Feng J

    更新日期:2020-07-15 00:00:00

  • Heterotopic Transcallosal Projections Are Present throughout the Mouse Cortex.

    abstract::Transcallosal projection neurons are a population of pyramidal excitatory neurons located in layers II/III and to a lesser extent layer V of the cortex. Their axons form the corpus callosum thereby providing an inter-hemispheric connection in the brain. While transcallosal projection neurons have been described in som...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00036

    authors: Chovsepian A,Empl L,Correa D,Bareyre FM

    更新日期:2017-02-21 00:00:00

  • Propofol Exposure in Early Life Induced Developmental Impairments in the Mouse Cerebellum.

    abstract::Propofol is a widely used anesthetic in the clinic while several studies have demonstrated that propofol exposure may cause neurotoxicity in the developing brain. However, the effects of early propofol exposure on cerebellar development are not well understood. Propofol (30 or 60 mg/kg) was administered to mice on pos...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00373

    authors: Xiao R,Yu D,Li X,Huang J,Jing S,Bao X,Yang T,Fan X

    更新日期:2017-11-22 00:00:00

  • GABA Neuronal Deletion of Shank3 Exons 14-16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities.

    abstract::Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00341

    authors: Yoo T,Cho H,Lee J,Park H,Yoo YE,Yang E,Kim JY,Kim H,Kim E

    更新日期:2018-10-09 00:00:00

  • A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    abstract::One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00152

    authors: Somogyi A,Katonai Z,Alpár A,Wolf E

    更新日期:2016-06-16 00:00:00

  • Comparative Phosphoproteomic Profiling of Type III Adenylyl Cyclase Knockout and Control, Male, and Female Mice.

    abstract::Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary cilia throughout the central nervous system (CNS). Genome-wide association studies in humans have associated ADCY3 with major depressive disorder and autistic spectrum disorder, both of which exhibit sexual dimorphism. To date, it is ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00034

    authors: Zhou Y,Qiu L,Sterpka A,Wang H,Chu F,Chen X

    更新日期:2019-02-13 00:00:00

  • TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect.

    abstract::Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson's disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substanti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00417

    authors: Zheng C,Chen G,Tan Y,Zeng W,Peng Q,Wang J,Cheng C,Yang X,Nie S,Xu Y,Zhang Z,Papa SM,Ye K,Cao X

    更新日期:2018-11-13 00:00:00

  • Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions.

    abstract::Recent research into axon-glial interactions in the nervous system has made a compelling case that glial cells have a relevant role in the metabolic support of axons, and that, in the case of myelinating cells, this role is independent of myelination itself. In this mini-review article, we summarize some of those obse...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00148

    authors: Bouçanova F,Chrast R

    更新日期:2020-05-29 00:00:00

  • Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus.

    abstract::The adult hypothalamus regulates many physiological functions and homeostatic loops, including growth, feeding and reproduction. In mammals, the hypothalamus derives from the ventral diencephalon where two distinct ventricular proliferative zones have been described. Although a set of transcription factors regulating ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00440

    authors: Maggi R,Zasso J,Conti L

    更新日期:2015-01-06 00:00:00