Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice.

Abstract:

:The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex.

journal_name

Front Cell Neurosci

authors

Kelly EA,Russo AS,Jackson CD,Lamantia CE,Majewska AK

doi

10.3389/fncel.2015.00369

subject

Has Abstract

pub_date

2015-09-22 00:00:00

pages

369

issn

1662-5102

journal_volume

9

pub_type

杂志文章
  • Visualization of cyclic nucleotide dynamics in neurons.

    abstract::The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in si...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00395

    authors: Gorshkov K,Zhang J

    更新日期:2014-12-04 00:00:00

  • Diversity of layer 5 projection neurons in the mouse motor cortex.

    abstract::In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolv...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00174

    authors: Oswald MJ,Tantirigama ML,Sonntag I,Hughes SM,Empson RM

    更新日期:2013-10-16 00:00:00

  • Overall Assay of Neuronal Signal Propagation Pattern With Long-Term Potentiation (LTP) in Hippocampal Slices From the CA1 Area With Fast Voltage-Sensitive Dye Imaging.

    abstract::Activity-dependent changes in the input-output (I-O) relationship of a neural circuit are central in the learning and memory function of the brain. To understand circuit-wide adjustments, optical imaging techniques to probe the membrane potential at every component of neurons, such as dendrites, axons and somas, in th...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00389

    authors: Tominaga Y,Taketoshi M,Tominaga T

    更新日期:2018-10-24 00:00:00

  • Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus.

    abstract::The adult hypothalamus regulates many physiological functions and homeostatic loops, including growth, feeding and reproduction. In mammals, the hypothalamus derives from the ventral diencephalon where two distinct ventricular proliferative zones have been described. Although a set of transcription factors regulating ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00440

    authors: Maggi R,Zasso J,Conti L

    更新日期:2015-01-06 00:00:00

  • Selective Modulation of α5 GABAA Receptors Exacerbates Aberrant Inhibition at Key Hippocampal Neuronal Circuits in APP Mouse Model of Alzheimer's Disease.

    abstract::Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABAA receptors (GABAARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer's disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.568194

    authors: Petrache AL,Khan AA,Nicholson MW,Monaco A,Kuta-Siejkowska M,Haider S,Hilton S,Jovanovic JN,Ali AB

    更新日期:2020-11-11 00:00:00

  • Comparative Phosphoproteomic Profiling of Type III Adenylyl Cyclase Knockout and Control, Male, and Female Mice.

    abstract::Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary cilia throughout the central nervous system (CNS). Genome-wide association studies in humans have associated ADCY3 with major depressive disorder and autistic spectrum disorder, both of which exhibit sexual dimorphism. To date, it is ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00034

    authors: Zhou Y,Qiu L,Sterpka A,Wang H,Chu F,Chen X

    更新日期:2019-02-13 00:00:00

  • Otic Neurogenesis Is Regulated by TGFβ in a Senescence-Independent Manner.

    abstract::Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00217

    authors: Magariños M,Barajas-Azpeleta R,Varela-Nieto I,R Aburto M

    更新日期:2020-08-17 00:00:00

  • Frequency dependence of CA3 spike phase response arising from h-current properties.

    abstract::The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00263

    authors: Borel M,Guadagna S,Jang HJ,Kwag J,Paulsen O

    更新日期:2013-12-25 00:00:00

  • Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury.

    abstract::A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocy...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.619707

    authors: Huntemer-Silveira A,Patil N,Brickner MA,Parr AM

    更新日期:2021-01-11 00:00:00

  • Differential vulnerability of interneurons in the epileptic hippocampus.

    abstract::The loss of hippocampal interneurons has been considered as one reason for the onset of temporal lobe epilepsy (TLE) by shifting the excitation-inhibition balance. Yet, there are many different interneuron types which show differential vulnerability in the context of an epileptogenic insult. We used the intrahippocamp...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00167

    authors: Marx M,Haas CA,Häussler U

    更新日期:2013-10-01 00:00:00

  • Contribution of sublinear and supralinear dendritic integration to neuronal computations.

    abstract::Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00067

    authors: Tran-Van-Minh A,Cazé RD,Abrahamsson T,Cathala L,Gutkin BS,DiGregorio DA

    更新日期:2015-03-24 00:00:00

  • Rethinking schizophrenia in the context of normal neurodevelopment.

    abstract::The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to co...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00060

    authors: Catts VS,Fung SJ,Long LE,Joshi D,Vercammen A,Allen KM,Fillman SG,Rothmond DA,Sinclair D,Tiwari Y,Tsai SY,Weickert TW,Shannon Weickert C

    更新日期:2013-05-15 00:00:00

  • Oligodendrocytes in a Nutshell.

    abstract::Oligodendrocytes are the myelinating cells of the central nervous system (CNS). While the phrase is oft repeated and holds true, the last few years have borne witness to radical change in our understanding of this unique cell type. Once considered static glue, oligodendrocytes are now seen as plastic and adaptive, cap...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00340

    authors: Michalski JP,Kothary R

    更新日期:2015-09-01 00:00:00

  • Automated Morphological Analysis of Microglia After Stroke.

    abstract::Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a mi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00106

    authors: Heindl S,Gesierich B,Benakis C,Llovera G,Duering M,Liesz A

    更新日期:2018-04-19 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00

  • Aberrant Activity in Degenerated Retinas Revealed by Electrical Imaging.

    abstract::In this review, I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL) of rod-degenerated (rd) mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between sp...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2016.00025

    authors: Zeck G

    更新日期:2016-02-08 00:00:00

  • S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement.

    abstract::Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00279

    authors: Santos G,Barateiro A,Brites D,Fernandes A

    更新日期:2020-09-04 00:00:00

  • MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3.

    abstract::MicroRNA (miR)-210 is the most consistently and predominantly up-regulated miR in response to hypoxia in multiple cancer cells. The roles of miR-210 in rat adrenal gland pheochromocytoma (PC-12) cells remain unknown. We aimed to explore the possible effect of miR-210 in neonatal brain injury. We explored the potential...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00285

    authors: Luan Y,Zhang X,Zhang Y,Dong Y

    更新日期:2017-09-22 00:00:00

  • Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells.

    abstract::Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00130

    authors: Li H,Kachelmeier A,Furness DN,Steyger PS

    更新日期:2015-04-14 00:00:00

  • Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis.

    abstract::Microglia is increasingly recognized to play a crucial role in the pathogenesis of psychiatric diseases. In particular, microglia may be the cellular link between inflammation and behavioral alterations: by releasing a number of soluble factors, among which pro-inflammatory cytokines, that can regulate synaptic activi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00243

    authors: Gentile A,De Vito F,Fresegna D,Musella A,Buttari F,Bullitta S,Mandolesi G,Centonze D

    更新日期:2015-06-25 00:00:00

  • Regulation of mRNA Translation by MID1: A Common Mechanism of Expanded CAG Repeat RNAs.

    abstract::Expansion of CAG repeats, which code for the disease-causing polyglutamine protein, is a common feature in polyglutamine diseases. RNA-mediated mechanisms that contribute to neuropathology in polyglutamine diseases are important. RNA-toxicity describes a phenomenon by which the mutant CAG repeat RNA recruits RNA-bindi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00226

    authors: Griesche N,Schilling J,Weber S,Rohm M,Pesch V,Matthes F,Auburger G,Krauss S

    更新日期:2016-10-07 00:00:00

  • Neuromodulation of Glial Function During Neurodegeneration.

    abstract::Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00278

    authors: Stevenson R,Samokhina E,Rossetti I,Morley JW,Buskila Y

    更新日期:2020-08-21 00:00:00

  • Experience-Dependent Changes in Myelin Basic Protein Expression in Adult Visual and Somatosensory Cortex.

    abstract::An experience-driven increase in oligodendrocytes and myelin in the somatosensory cortex (S1) has emerged as a new marker of adult cortical plasticity. That finding contrasts with the view that myelin is a structural brake on plasticity, and that contributes to ending the critical period (CP) in the visual cortex (V1)...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00056

    authors: Murphy KM,Mancini SJ,Clayworth KV,Arbabi K,Beshara S

    更新日期:2020-03-17 00:00:00

  • Phosphodiesterase-2 Inhibitor Bay 60-7550 Ameliorates Aβ-Induced Cognitive and Memory Impairment via Regulation of the HPA Axis.

    abstract::The dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis is often seen in Alzheimer's disease (AD) patients with cognitive deficits. Selective inhibition of phosphodiesterase (PDE) 4 and 5 has already proven to be effective in reducing beta-amyloid 1-42 (Aβ1-42)-mediated pathology by regulating corticotropin-r...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00432

    authors: Ruan L,Du K,Tao M,Shan C,Ye R,Tang Y,Pan H,Lv J,Zhang M,Pan J

    更新日期:2019-10-02 00:00:00

  • IL-33/ST2L Signaling Provides Neuroprotection Through Inhibiting Autophagy, Endoplasmic Reticulum Stress, and Apoptosis in a Mouse Model of Traumatic Brain Injury.

    abstract::Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) cytokine family and an extracellular ligand for the orphan IL-1 receptor ST2. Accumulated evidence shows that the IL-33/ST2 axis plays a crucial role in the pathogenesis of central nervous system (CNS) diseases and injury, including traumatic brain injury ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00095

    authors: Gao Y,Zhang MY,Wang T,Fan YY,Yu LS,Ye GH,Wang ZF,Gao C,Wang HC,Luo CL,Tao LY

    更新日期:2018-04-25 00:00:00

  • Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission.

    abstract::At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00235

    authors: Martini M,Canella R,Rubbini G,Fesce R,Rossi ML

    更新日期:2015-06-23 00:00:00

  • Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation.

    abstract::Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca(2+) buffers that shape [Ca(2+)] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca(2+) faster than any other character...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00239

    authors: Timofeeva Y,Volynski KE

    更新日期:2015-07-01 00:00:00

  • Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system.

    abstract::Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases us...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00017

    authors: Bonnamain V,Neveu I,Naveilhan P

    更新日期:2012-04-11 00:00:00

  • Unexpected Exacerbation of Neuroinflammatory Response After a Combined Therapy in Old Parkinsonian Mice.

    abstract::The design of therapeutic strategies that focus on the repositioning of anti-inflammatory and antioxidant drugs are a great bet to slow down the progression of neurodegenerative disorders. Despite the fact that Parkinson's disease (PD) is an age-related pathology, almost all experimental studies are carried out in you...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00451

    authors: Gil-Martínez AL,Cuenca L,Estrada C,Sánchez-Rodrigo C,Fernández-Villalba E,Herrero MT

    更新日期:2018-11-30 00:00:00

  • Aβ and Inflammatory Stimulus Activate Diverse Signaling Pathways in Monocytic Cells: Implications in Retaining Phagocytosis in Aβ-Laden Environment.

    abstract::Background: Accumulation of amyloid β (Aβ) is one of the main hallmarks of Alzheimer's disease (AD). The enhancement of Aβ clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aβ in monocytic cells are poorly known. We aimed to study whether different forms of ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00279

    authors: Savchenko E,Malm T,Konttinen H,Hämäläinen RH,Guerrero-Toro C,Wojciechowski S,Giniatullin R,Koistinaho J,Magga J

    更新日期:2016-12-05 00:00:00