Selective Modulation of α5 GABAA Receptors Exacerbates Aberrant Inhibition at Key Hippocampal Neuronal Circuits in APP Mouse Model of Alzheimer's Disease.

Abstract:

:Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABAA receptors (GABAARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer's disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the expression of α5 GABAARs, consequently altering synaptic function during AD pathogenesis. Using medicinal chemistry and computational modeling, we developed aqueous soluble hybrids of 6,6-dimethyl-3-(2-hydroxyethyl) thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophene-4(5H)-one, that demonstrated selective binding and high negative allosteric modulation, specifically for the α5 GABAAR subtypes in constructed HEK293 stable cell-lines. Using a knock-in mouse model of AD (APPNL-F/NL-F), which expresses a mutant form of human amyloid-β (Aβ), we performed immunofluorescence studies combined with electrophysiological whole-cell recordings to investigate the effects of our key molecule, α5-SOP002 in the hippocampal CA1 region. In aged APPNL-F/NL-F mice, selective preservation of α5 GABAARs was observed in, calretinin- (CR), cholecystokinin- (CCK), somatostatin- (SST) expressing interneurons, and pyramidal cells. Previously, we reported that CR dis-inhibitory interneurons, specialized in regulating other interneurons displayed abnormally high levels of synaptic inhibition in the APPNL-F/NL-F mouse model, here we show that this excessive inhibition was "normalized" to control values with bath-applied α5-SOP002 (1 μM). However, α5-SOP002, further impaired inhibition onto CCK and pyramidal cells that were already largely compromised by exhibiting a deficit of inhibition in the AD model. In summary, using a multi-disciplinary approach, we show that exposure to α5 GABAAR NAMs may further compromise aberrant synapses in AD. We, therefore, suggest that the α5 GABAAR is not a suitable therapeutic target for the treatment of AD or other cognitive deficits due to the widespread neuronal-networks that use α5 GABAARs.

journal_name

Front Cell Neurosci

authors

Petrache AL,Khan AA,Nicholson MW,Monaco A,Kuta-Siejkowska M,Haider S,Hilton S,Jovanovic JN,Ali AB

doi

10.3389/fncel.2020.568194

subject

Has Abstract

pub_date

2020-11-11 00:00:00

pages

568194

issn

1662-5102

journal_volume

14

pub_type

杂志文章
  • Quantitating the subtleties of microglial morphology with fractal analysis.

    abstract::It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between "ramified resting" and "activated amoeboid" has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00003

    authors: Karperien A,Ahammer H,Jelinek HF

    更新日期:2013-01-30 00:00:00

  • The path from the choroid plexus to the subventricular zone: go with the flow!

    abstract::IN ADULT MAMMALS, UNDER PHYSIOLOGICAL CONDITIONS, NEUROGENESIS, THE PROCESS OF GENERATING NEW FUNCTIONAL NEURONS FROM PRECURSOR CELLS, OCCURS MAINLY IN TWO BRAIN AREAS: the subgranular zone in the dentate gyrus of the hippocampus, and the subventricular zone (SVZ) lining the walls of the brain lateral ventricles. Taki...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00034

    authors: Falcão AM,Marques F,Novais A,Sousa N,Palha JA,Sousa JC

    更新日期:2012-08-09 00:00:00

  • Glycine receptors and brain development.

    abstract::Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous sy...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00184

    authors: Avila A,Nguyen L,Rigo JM

    更新日期:2013-10-21 00:00:00

  • Patterns of Cerebellar Gray Matter Atrophy Across Alzheimer's Disease Progression.

    abstract::The role of the cerebellum in cognitive function has been broadly investigated in the last decades from an anatomical, clinical, and functional point of view and new evidence points toward a significant contribution of the posterior lobes of the cerebellum in cognition in Alzheimer's disease (AD). In the present work ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00430

    authors: Toniolo S,Serra L,Olivito G,Marra C,Bozzali M,Cercignani M

    更新日期:2018-11-20 00:00:00

  • Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma.

    abstract::Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or dis...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00158

    authors: Penas C,Navarro X

    更新日期:2018-06-07 00:00:00

  • Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments.

    abstract::Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00196

    authors: Goel P,Nishimura S,Chetlapalli K,Li X,Chen C,Dickman D

    更新日期:2020-06-26 00:00:00

  • Quantifying mechanical force in axonal growth and guidance.

    abstract::Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connection...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00359

    authors: Athamneh AI,Suter DM

    更新日期:2015-09-16 00:00:00

  • Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    abstract::The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00178

    authors: Grier BD,Belluscio L,Cheetham CE

    更新日期:2016-07-15 00:00:00

  • Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro.

    abstract::Schwann cells (SCs) are one of the most promising cellular candidates for the treatment of spinal cord injury. However, SCs show poor migratory ability within the astrocyte-rich central nervous system (CNS) environment and exhibit only limited integration with host astrocytes. Our strategy for improving the therapeuti...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00083

    authors: Huang L,Xia B,Liu Z,Cao Q,Huang J,Luo Z

    更新日期:2017-03-28 00:00:00

  • Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases.

    abstract::Microglia are activated after neuronal injury and in neurodegenerative diseases, and trigger neuroinflammation in the central nervous system (CNS). Microglia-derived neuroinflammation has both beneficial and detrimental effects on neurons. Because the timing and magnitude of microglial activation is thought to be a cr...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00206

    authors: Konishi H,Kiyama H

    更新日期:2018-08-06 00:00:00

  • A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    abstract::One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00152

    authors: Somogyi A,Katonai Z,Alpár A,Wolf E

    更新日期:2016-06-16 00:00:00

  • Electroacupuncture Pretreatment Ameliorates PTSD-Like Behaviors in Rats by Enhancing Hippocampal Neurogenesis via the Keap1/Nrf2 Antioxidant Signaling Pathway.

    abstract::Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain disorders. However, whether and via which exact molecular mechanisms it ameliorates post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats received EA stimulation for seven consecutive days before exposure ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00275

    authors: Zhou CH,Xue F,Xue SS,Sang HF,Liu L,Wang Y,Cai M,Zhang ZJ,Tan QR,Wang HN,Peng ZW

    更新日期:2019-06-21 00:00:00

  • Urine Organic Acids as Potential Biomarkers for Autism-Spectrum Disorder in Chinese Children.

    abstract::Autism spectrum disorder (ASD) is a neurodevelopmental disorder that lacks clear biological biomarkers. Existing diagnostic methods focus on behavioral and performance characteristics, which complicates the diagnosis of patients younger than 3 years-old. The purpose of this study is to characterize metabolic features ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00150

    authors: Chen Q,Qiao Y,Xu XJ,You X,Tao Y

    更新日期:2019-04-30 00:00:00

  • Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood.

    abstract::Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00442

    authors: Negrón-Oyarzo I,Dagnino-Subiabre A,Muñoz Carvajal P

    更新日期:2015-11-12 00:00:00

  • Targeting Microglial Population Dynamics in Alzheimer's Disease: Are We Ready for a Potential Impact on Immune Function?

    abstract::Alzheimer's disease (AD) is the most common form of dementia, affecting two-thirds of people with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune response, whereby microgl...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00149

    authors: Martin-Estebane M,Gomez-Nicola D

    更新日期:2020-06-05 00:00:00

  • Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    abstract::Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00434

    authors: Natale G,Lenzi P,Lazzeri G,Falleni A,Biagioni F,Ryskalin L,Fornai F

    更新日期:2015-11-06 00:00:00

  • Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat.

    abstract::To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00182

    authors: Hercher D,Kerbl M,Schuh CMAP,Heinzel J,Gal L,Stainer M,Schmidhammer R,Hausner T,Redl H,Nógrádi A,Hacobian A

    更新日期:2019-05-08 00:00:00

  • The Tripeptide RER Mimics Secreted Amyloid Precursor Protein-Alpha in Upregulating LTP.

    abstract::Secreted amyloid precursor protein-alpha (sAPPα), generated by enzymatic processing of the APP, possesses a range of neurotrophic and neuroprotective properties and plays a critical role in the molecular mechanisms of memory and learning. One of the key active regions of sAPPα is the central APP domain (E2) that conta...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00459

    authors: Morrissey JA,Bigus E,Necarsulmer JC,Srinivasan V,Peppercorn K,O'Leary DJ,Mockett BG,Tate WP,Hughes SM,Parfitt KD,Abraham WC

    更新日期:2019-10-18 00:00:00

  • CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system.

    abstract::Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00438

    authors: Cabral Miranda F,Adão-Novaes J,Hauswirth WW,Linden R,Petrs-Silva H,Chiarini LB

    更新日期:2015-01-09 00:00:00

  • Lack of serotonin reuptake during brain development alters rostral raphe-prefrontal network formation.

    abstract::Besides its "classical" neurotransmitter function, serotonin (5-HT) has been found to also act as a neurodevelopmental signal. During development, the 5-HT projection system, besides an external placental source, represents one of the earliest neurotransmitter systems to innervate the brain. One of the targets of the ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00143

    authors: Witteveen JS,Middelman A,van Hulten JA,Martens GJ,Homberg JR,Kolk SM

    更新日期:2013-10-04 00:00:00

  • The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse.

    abstract::The N-methyl-D-aspartate receptors (NMDARs) are part of a large multiprotein complex at the glutamatergic synapse. The assembly of NMDARs with synaptic proteins offers a means to regulate NMDAR channel properties and receptor trafficking, and couples NMDAR activation to distinct intracellular signaling pathways, thus ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00160

    authors: Fan X,Jin WY,Wang YT

    更新日期:2014-06-10 00:00:00

  • Bilateral Synchronization of Hippocampal Early Sharp Waves in Neonatal Rats.

    abstract::In the neonatal rodent hippocampus, the first and predominant pattern of correlated neuronal network activity is early sharp waves (eSPWs). Whether and how eSPWs are organized bilaterally remains unknown. Here, using simultaneous silicone probe recordings from the left and right hippocampus in neonatal rats in vivo we...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00029

    authors: Valeeva G,Nasretdinov A,Rychkova V,Khazipov R

    更新日期:2019-02-07 00:00:00

  • Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation.

    abstract::Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca(2+) buffers that shape [Ca(2+)] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca(2+) faster than any other character...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00239

    authors: Timofeeva Y,Volynski KE

    更新日期:2015-07-01 00:00:00

  • Internal State Dependent Odor Processing and Perception-The Role of Neuromodulation in the Fly Olfactory System.

    abstract::Animals rely heavily on their sense of olfaction to perform various vital interactions with an ever-in-flux environment. The turbulent and combinatorial nature of air-borne odorant cues demands the employment of various coding strategies, which allow the animal to attune to its internal needs and past or present exper...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2018.00011

    authors: Sayin S,Boehm AC,Kobler JM,De Backer JF,Grunwald Kadow IC

    更新日期:2018-01-30 00:00:00

  • Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors.

    abstract::Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10-12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking medi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00450

    authors: Ghosh A,Purchase NC,Chen X,Yuan Q

    更新日期:2015-11-19 00:00:00

  • Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia.

    abstract::Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expre...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00084

    authors: Sathyanesan A,Feijoo AA,Mehta ST,Nimarko AF,Lin W

    更新日期:2013-06-04 00:00:00

  • Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    abstract::Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibili...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00142

    authors: Spühler IA,Conley GM,Scheffold F,Sprecher SG

    更新日期:2016-05-26 00:00:00

  • γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration.

    abstract::Spontaneous or medically induced reperfusion occurs in up to 70% of patients within 24 h after cerebral ischemia. Reperfusion of ischemic brain tissue can augment the inflammatory response that causes additional injury. Recently, T cells have been shown to be an essential part of the post-ischemic tissue damage, and e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00368

    authors: Gelderblom M,Arunachalam P,Magnus T

    更新日期:2014-11-05 00:00:00

  • Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis.

    abstract::Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory fu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00279

    authors: D'Ambrosi N,Rossi S,Gerbino V,Cozzolino M

    更新日期:2014-09-08 00:00:00

  • Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus.

    abstract::Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin c...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00106

    authors: Heise C,Schroeder JC,Schoen M,Halbedl S,Reim D,Woelfle S,Kreutz MR,Schmeisser MJ,Boeckers TM

    更新日期:2016-04-26 00:00:00