Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

Abstract:

:Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

journal_name

Front Cell Neurosci

authors

Rosskothen-Kuhl N,Hildebrandt H,Birkenhäger R,Illing RB

doi

10.3389/fncel.2018.00043

subject

Has Abstract

pub_date

2018-02-22 00:00:00

pages

43

issn

1662-5102

journal_volume

12

pub_type

杂志文章
  • Histone deacetylases and their role in motor neuron degeneration.

    abstract::Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons. The cause of this selective neuronal death is unknown, but transcriptional dysregulation is recently emerging as an important factor. The physical substrate for the regulation of the transc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00243

    authors: Lazo-Gómez R,Ramírez-Jarquín UN,Tovar-Y-Romo LB,Tapia R

    更新日期:2013-12-05 00:00:00

  • Firing clamp: a novel method for single-trial estimation of excitatory and inhibitory synaptic neuronal conductances.

    abstract::Understanding non-stationary neuronal activity as seen in vivo requires estimation of both excitatory and inhibitory synaptic conductances from a single trial of recording. For this purpose, we propose a new intracellular recording method, called "firing clamp." Synaptic conductances are estimated from the characteris...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00086

    authors: Chizhov AV,Malinina E,Druzin M,Graham LJ,Johansson S

    更新日期:2014-03-27 00:00:00

  • Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer's disease diagnosis.

    abstract::The hippocampus is one of the earliest affected brain regions in Alzheimer's disease (AD) and its dysfunction is believed to underlie the core feature of the disease-memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpo...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00095

    authors: Maruszak A,Thuret S

    更新日期:2014-03-31 00:00:00

  • Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor.

    abstract::Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00106

    authors: Frye CA,Koonce CJ,Walf AA

    更新日期:2014-04-09 00:00:00

  • Modulation of adult-born neurons in the inflamed hippocampus.

    abstract::Throughout life new neurons are continuously added to the hippocampal circuitry involved with spatial learning and memory. These new cells originate from neural precursors in the subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate into neural networks encoding spatial and contextu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00145

    authors: Belarbi K,Rosi S

    更新日期:2013-09-06 00:00:00

  • The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma.

    abstract::The malignancy of glioblastoma multiform (GBM), the most common and aggressive form of human brain tumors, strongly correlates with the presence of hypoxic areas, but the mechanisms controlling the hypoxia-induced aggressiveness are still unclear. GBM cells express a number of ion channels whose activity supports cell...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00467

    authors: Sforna L,Cenciarini M,Belia S,D'Adamo MC,Pessia M,Franciolini F,Catacuzzeno L

    更新日期:2015-01-15 00:00:00

  • Corrigendum: Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB.

    abstract::[This corrects the article on p. 56 in vol. 11, PMID: 28303091.]. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fncel.2017.00256

    authors: Owens R,Grabert K,Davies CL,Alfieri A,Antel JP,Healy LM,McColl BW

    更新日期:2017-08-24 00:00:00

  • SIRT1 in the brain-connections with aging-associated disorders and lifespan.

    abstract::The silent mating type information regulation 2 proteins (sirtuins) 1 of class III histone deacetylases (HDACs) have been associated with health span and longevity. SIRT1, the best studied member of the mammalian sirtuins, has a myriad of roles in multiple tissues and organs. However, a significant part of SIRT1's rol...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00064

    authors: Ng F,Wijaya L,Tang BL

    更新日期:2015-03-09 00:00:00

  • Endothelial Nitric Oxide Synthase Is Present in Dendritic Spines of Neurons in Primary Cultures.

    abstract::Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implic...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00180

    authors: Caviedes A,Varas-Godoy M,Lafourcade C,Sandoval S,Bravo-Alegria J,Kaehne T,Massmann A,Figueroa JP,Nualart F,Wyneken U

    更新日期:2017-07-04 00:00:00

  • Ligand-gated ion channel interacting proteins and their role in neuroprotection.

    abstract::Ion channel receptors are a vital component of nervous system signaling, allowing rapid and direct conversion of a chemical neurotransmitter message to an electrical current. In recent decades, it has become apparent that ionotropic receptors are regulated by protein-protein interactions with other ion channels, G-pro...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00125

    authors: Li S,Wong AH,Liu F

    更新日期:2014-05-09 00:00:00

  • γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration.

    abstract::Spontaneous or medically induced reperfusion occurs in up to 70% of patients within 24 h after cerebral ischemia. Reperfusion of ischemic brain tissue can augment the inflammatory response that causes additional injury. Recently, T cells have been shown to be an essential part of the post-ischemic tissue damage, and e...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00368

    authors: Gelderblom M,Arunachalam P,Magnus T

    更新日期:2014-11-05 00:00:00

  • Identification and function of long non-coding RNA.

    abstract::Long non-coding (lnc) RNAs are defined as non-protein coding RNAs distinct from housekeeping RNAs such as tRNAs, rRNAs, and snRNAs, and independent from small RNAs with specific molecular processing machinery such as micro- or piwi-RNAs. Recent studies of lncRNAs across different species have revealed a diverse popula...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2013.00168

    authors: Ernst C,Morton CC

    更新日期:2013-10-02 00:00:00

  • Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels.

    abstract::The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hype...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00341

    authors: Grzelka K,Kurowski P,Gawlak M,Szulczyk P

    更新日期:2017-11-02 00:00:00

  • Improved Generation of Induced Pluripotent Stem Cells From Hair Derived Keratinocytes - A Tool to Study Neurodevelopmental Disorders as ADHD.

    abstract::In the last decade, there is an increasing application of induced pluripotent stem cells (iPSCs) for disease modeling. The iPSC technology enables the study of patient-specific neuronal cell lines in vitro to evaluate dysfunction at the cellular level and identify the responsible genetic factors. This approach might b...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00321

    authors: Re S,Dogan AA,Ben-Shachar D,Berger G,Werling AM,Walitza S,Grünblatt E

    更新日期:2018-09-25 00:00:00

  • GnRH-1 Neural Migration From the Nose to the Brain Is Independent From Slit2, Robo3 and NELL2 Signaling.

    abstract::Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00070

    authors: Taroc EZM,Lin JM,Tulloch AJ,Jaworski A,Forni PE

    更新日期:2019-03-01 00:00:00

  • Implications of glial nitric oxide in neurodegenerative diseases.

    abstract::Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream t...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00322

    authors: Yuste JE,Tarragon E,Campuzano CM,Ros-Bernal F

    更新日期:2015-08-17 00:00:00

  • A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information.

    abstract::Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by provi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2020.600537

    authors: Egger V,Diamond JS

    更新日期:2020-11-05 00:00:00

  • Urine Organic Acids as Potential Biomarkers for Autism-Spectrum Disorder in Chinese Children.

    abstract::Autism spectrum disorder (ASD) is a neurodevelopmental disorder that lacks clear biological biomarkers. Existing diagnostic methods focus on behavioral and performance characteristics, which complicates the diagnosis of patients younger than 3 years-old. The purpose of this study is to characterize metabolic features ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00150

    authors: Chen Q,Qiao Y,Xu XJ,You X,Tao Y

    更新日期:2019-04-30 00:00:00

  • Heritable and inducible gene knockdown in astrocytes or neurons in vivo by a combined lentiviral and RNAi approach.

    abstract::Gene knockout by homologous recombination is a popular method to study gene functions in the mouse in vivo. However, its lack of temporal control has limited the interpretation of knockout studies because the complete elimination of a gene product often alters developmental processes, and can induce severe malformatio...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00062

    authors: Heitz F,Johansson T,Baumgärtel K,Gecaj R,Pelczar P,Mansuy IM

    更新日期:2014-03-19 00:00:00

  • MicroRNA-210 Protects PC-12 Cells Against Hypoxia-Induced Injury by Targeting BNIP3.

    abstract::MicroRNA (miR)-210 is the most consistently and predominantly up-regulated miR in response to hypoxia in multiple cancer cells. The roles of miR-210 in rat adrenal gland pheochromocytoma (PC-12) cells remain unknown. We aimed to explore the possible effect of miR-210 in neonatal brain injury. We explored the potential...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00285

    authors: Luan Y,Zhang X,Zhang Y,Dong Y

    更新日期:2017-09-22 00:00:00

  • Mechanisms of Homeostatic Synaptic Plasticity in vivo.

    abstract::Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are man...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00520

    authors: Lee HK,Kirkwood A

    更新日期:2019-12-03 00:00:00

  • Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis.

    abstract::Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory fu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00279

    authors: D'Ambrosi N,Rossi S,Gerbino V,Cozzolino M

    更新日期:2014-09-08 00:00:00

  • Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats.

    abstract::Orexin and melanin-concentrating hormone (MCH) neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00070

    authors: Linehan V,Hirasawa M

    更新日期:2018-03-13 00:00:00

  • Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system.

    abstract::Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases us...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2012.00017

    authors: Bonnamain V,Neveu I,Naveilhan P

    更新日期:2012-04-11 00:00:00

  • Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice.

    abstract::Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never bee...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00004

    authors: Tatulli G,Mitro N,Cannata SM,Audano M,Caruso D,D'Arcangelo G,Lettieri-Barbato D,Aquilano K

    更新日期:2018-01-17 00:00:00

  • Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    abstract::It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produc...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00043

    authors: Andrews AM,Lutton EM,Merkel SF,Razmpour R,Ramirez SH

    更新日期:2016-02-29 00:00:00

  • Human Neural Stem Cell Induced Functional Network Stabilization After Cortical Stroke: A Longitudinal Resting-State fMRI Study in Mice.

    abstract::Most stroke studies dealing with functional deficits and assessing stem cell therapy produce extensive hemispheric damage and can be seen as a model for severe clinical strokes. However, mild strokes have a better prospect for functional recovery. Recently, anatomic and behavioral changes have been reported for distal...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00086

    authors: Minassian A,Green C,Diedenhofen M,Vogel S,Hess S,Stoeber M,Radmilovic MD,Wiedermann D,Kloppenburg P,Hoehn M

    更新日期:2020-04-07 00:00:00

  • Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission.

    abstract::The brain relies on GABAergic neurons to control the ongoing activity of neuronal networks. GABAergic neurons control the firing pattern of excitatory cells, the temporal structure of membrane potential oscillations and the time window for integration of synaptic inputs. These actions require a fine control of the tim...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00128

    authors: Scimemi A

    更新日期:2014-05-13 00:00:00

  • Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity.

    abstract::Slc4a10 is a Na(+)-coupled Cl(-)-HCO3 (-) exchanger, which is expressed in principal and inhibitory neurons as well as in choroid plexus epithelial cells of the brain. Slc4a10 knockout (KO) mice have collapsed brain ventricles and display an increased seizure threshold, while heterozygous deletions in man have been as...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00223

    authors: Sinning A,Liebmann L,Hübner CA

    更新日期:2015-06-16 00:00:00

  • S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement.

    abstract::Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2020.00279

    authors: Santos G,Barateiro A,Brites D,Fernandes A

    更新日期:2020-09-04 00:00:00