Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels.

Abstract:

:The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.

journal_name

Front Cell Neurosci

authors

Grzelka K,Kurowski P,Gawlak M,Szulczyk P

doi

10.3389/fncel.2017.00341

subject

Has Abstract

pub_date

2017-11-02 00:00:00

pages

341

issn

1662-5102

journal_volume

11

pub_type

杂志文章
  • The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain.

    abstract::To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic in...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00436

    authors: Yang Z,Tan Q,Cheng D,Zhang L,Zhang J,Gu EW,Fang W,Lu X,Liu X

    更新日期:2018-11-21 00:00:00

  • Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    abstract::Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adult...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00043

    authors: Rosskothen-Kuhl N,Hildebrandt H,Birkenhäger R,Illing RB

    更新日期:2018-02-22 00:00:00

  • On the Involvement of BDNF Signaling in Memory Reconsolidation.

    abstract::When retrieval occurs concomitantly with novelty detection, mismatch perception or reactivation of conflicting information, consolidated memories can enter into a labile state, and to persist, must be restabilized through a protein synthesis-dependent reconsolidation process during which their strength and content can...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2019.00383

    authors: Gonzalez MC,Radiske A,Cammarota M

    更新日期:2019-08-22 00:00:00

  • Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells.

    abstract::Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately shou...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00069

    authors: Basile JR,Binmadi NO,Zhou H,Yang YH,Paoli A,Proia P

    更新日期:2013-05-09 00:00:00

  • Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats.

    abstract::Orexin and melanin-concentrating hormone (MCH) neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00070

    authors: Linehan V,Hirasawa M

    更新日期:2018-03-13 00:00:00

  • Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission.

    abstract::The brain relies on GABAergic neurons to control the ongoing activity of neuronal networks. GABAergic neurons control the firing pattern of excitatory cells, the temporal structure of membrane potential oscillations and the time window for integration of synaptic inputs. These actions require a fine control of the tim...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00128

    authors: Scimemi A

    更新日期:2014-05-13 00:00:00

  • Erratum on: Neurogenesis in the embryonic and adult brain: same regulators, different roles.

    abstract::[This corrects the article on p. 396 in vol. 8, PMID: 25505873.]. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fncel.2015.00160

    authors: Frontiers Production Office.

    更新日期:2015-04-23 00:00:00

  • Prominent Changes in Cerebro-Cerebellar Functional Connectivity During Continuous Cognitive Processing.

    abstract::While task-dependent responses of specific brain areas during cognitive tasks are well established, much less is known about the changes occurring in resting state networks (RSNs) in relation to continuous cognitive processing. In particular, the functional involvement of cerebro-cerebellar loops connecting the poster...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00331

    authors: Castellazzi G,Bruno SD,Toosy AT,Casiraghi L,Palesi F,Savini G,D'Angelo E,Wheeler-Kingshott CAMG

    更新日期:2018-10-01 00:00:00

  • Molecular Characterization of an SV Capture Site in the Mid-Region of the Presynaptic CaV2.1 Calcium Channel C-Terminal.

    abstract::Neurotransmitter is released from presynaptic nerve terminals at fast-transmitting synapses by the action potential-gating of voltage dependent calcium channels (CaV), primarily of the CaV2.1 and CaV2.2 types. Entering Ca2+ diffuses to a nearby calcium sensor associated with a docked synaptic vesicle (SV) and initiate...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2018.00127

    authors: Snidal CA,Li Q,Elliott BB,Mah HK,Chen RHC,Gardezi SR,Stanley EF

    更新日期:2018-05-11 00:00:00

  • Synaptic vesicle tethering and the CaV2.2 distal C-terminal.

    abstract::Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) whi...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00071

    authors: Wong FK,Nath AR,Chen RH,Gardezi SR,Li Q,Stanley EF

    更新日期:2014-03-07 00:00:00

  • Diversity of layer 5 projection neurons in the mouse motor cortex.

    abstract::In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolv...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00174

    authors: Oswald MJ,Tantirigama ML,Sonntag I,Hughes SM,Empson RM

    更新日期:2013-10-16 00:00:00

  • Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization.

    abstract::The Purkinje cell (PC) is among the most complex neurons in the brain and plays a critical role for cerebellar functioning. PCs operate as fast pacemakers modulated by synaptic inputs but can switch from simple spikes to complex bursts and, in some conditions, show bistability. In contrast to original works emphasizin...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00047

    authors: Masoli S,Solinas S,D'Angelo E

    更新日期:2015-02-24 00:00:00

  • Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis.

    abstract::Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory fu...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2014.00279

    authors: D'Ambrosi N,Rossi S,Gerbino V,Cozzolino M

    更新日期:2014-09-08 00:00:00

  • Electroacupuncture Pretreatment Ameliorates PTSD-Like Behaviors in Rats by Enhancing Hippocampal Neurogenesis via the Keap1/Nrf2 Antioxidant Signaling Pathway.

    abstract::Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain disorders. However, whether and via which exact molecular mechanisms it ameliorates post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats received EA stimulation for seven consecutive days before exposure ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00275

    authors: Zhou CH,Xue F,Xue SS,Sang HF,Liu L,Wang Y,Cai M,Zhang ZJ,Tan QR,Wang HN,Peng ZW

    更新日期:2019-06-21 00:00:00

  • Corrigendum: Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB.

    abstract::[This corrects the article on p. 56 in vol. 11, PMID: 28303091.]. ...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 已发布勘误

    doi:10.3389/fncel.2017.00256

    authors: Owens R,Grabert K,Davies CL,Alfieri A,Antel JP,Healy LM,McColl BW

    更新日期:2017-08-24 00:00:00

  • Phosphodiesterase-2 Inhibitor Bay 60-7550 Ameliorates Aβ-Induced Cognitive and Memory Impairment via Regulation of the HPA Axis.

    abstract::The dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis is often seen in Alzheimer's disease (AD) patients with cognitive deficits. Selective inhibition of phosphodiesterase (PDE) 4 and 5 has already proven to be effective in reducing beta-amyloid 1-42 (Aβ1-42)-mediated pathology by regulating corticotropin-r...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00432

    authors: Ruan L,Du K,Tao M,Shan C,Ye R,Tang Y,Pan H,Lv J,Zhang M,Pan J

    更新日期:2019-10-02 00:00:00

  • HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex.

    abstract::Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00109

    authors: Albertson AJ,Bohannon AS,Hablitz JJ

    更新日期:2017-04-19 00:00:00

  • Propofol Exposure in Early Life Induced Developmental Impairments in the Mouse Cerebellum.

    abstract::Propofol is a widely used anesthetic in the clinic while several studies have demonstrated that propofol exposure may cause neurotoxicity in the developing brain. However, the effects of early propofol exposure on cerebellar development are not well understood. Propofol (30 or 60 mg/kg) was administered to mice on pos...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2017.00373

    authors: Xiao R,Yu D,Li X,Huang J,Jing S,Bao X,Yang T,Fan X

    更新日期:2017-11-22 00:00:00

  • Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway.

    abstract::Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accom...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00094

    authors: Lahiri DK,Sokol DK,Erickson C,Ray B,Ho CY,Maloney B

    更新日期:2013-06-21 00:00:00

  • Rethinking schizophrenia in the context of normal neurodevelopment.

    abstract::The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to co...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00060

    authors: Catts VS,Fung SJ,Long LE,Joshi D,Vercammen A,Allen KM,Fillman SG,Rothmond DA,Sinclair D,Tiwari Y,Tsai SY,Weickert TW,Shannon Weickert C

    更新日期:2013-05-15 00:00:00

  • NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence.

    abstract::The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter (NKCC1) is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brai...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2016.00200

    authors: Magalhães AC,Rivera C

    更新日期:2016-08-17 00:00:00

  • Heterogeneity of presynaptic proteins: do not forget isoforms.

    abstract::Analysis of presynaptic protein expression in glutamatergic and GABAergic central synapses performed in several laboratories and with different techniques is unveiling a complex scenario, largely because each presynaptic protein exists in several isoforms. The interpretation of these findings is generally based on the...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00008

    authors: Bragina L,Fattorini G,Giovedì S,Bosco F,Benfenati F,Conti F

    更新日期:2013-02-04 00:00:00

  • Thyroid hormone treated astrocytes induce maturation of cerebral cortical neurons through modulation of proteoglycan levels.

    abstract::Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4) play crucial role in several steps of brain morphogenesis including proliferation of progenit...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2013.00125

    authors: Dezonne RS,Stipursky J,Araujo AP,Nones J,Pavão MS,Porcionatto M,Gomes FC

    更新日期:2013-08-12 00:00:00

  • Recurrent seizure-like events are associated with coupled astroglial synchronization.

    abstract::Increasing evidence suggest that astrocytes significantly modulate neuronal function at the level of the tripartite synapse both in physiological and pathophysiological conditions. The global control of the astrocytic syncytium over neuronal networks, however, is still less recognized. Here we examined astrocytic sign...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2015.00215

    authors: Kékesi O,Ioja E,Szabó Z,Kardos J,Héja L

    更新日期:2015-06-18 00:00:00

  • Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice.

    abstract::Central pattern generators (CPGs) in the thoracolumbar spinal cord generate the basic hindlimb locomotor pattern. The locomotor CPG integrates descending commands and sensory information from the periphery to activate, modulate and halt the rhythmic program. General CPG function and response to sensory perturbations a...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00452

    authors: Li EZ,Garcia-Ramirez DL,Dougherty KJ

    更新日期:2019-10-09 00:00:00

  • Firing clamp: a novel method for single-trial estimation of excitatory and inhibitory synaptic neuronal conductances.

    abstract::Understanding non-stationary neuronal activity as seen in vivo requires estimation of both excitatory and inhibitory synaptic conductances from a single trial of recording. For this purpose, we propose a new intracellular recording method, called "firing clamp." Synaptic conductances are estimated from the characteris...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00086

    authors: Chizhov AV,Malinina E,Druzin M,Graham LJ,Johansson S

    更新日期:2014-03-27 00:00:00

  • Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan.

    abstract::Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2010.00016

    authors: Pinto JG,Hornby KR,Jones DG,Murphy KM

    更新日期:2010-06-10 00:00:00

  • Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity.

    abstract::Type 2 diabetes increases the risk for dementia, including Alzheimer's disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly u...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2019.00239

    authors: Moosecker S,Gomes P,Dioli C,Yu S,Sotiropoulos I,Almeida OFX

    更新日期:2019-06-12 00:00:00

  • Combination Low-Dose Tissue-Type Plasminogen Activator Plus Annexin A2 for Improving Thrombolytic Stroke Therapy.

    abstract::Risk of hemorrhagic transformation, incomplete reperfusion, neurotoxicity, and a short treatment time window comprises major challenges for tissue plasminogen activator (tPA) thrombolytic stroke therapy. Improving tPA therapy has become one of the highest priorities in the stroke field. This mini review article focuse...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncel.2015.00397

    authors: Jiang Y,Fan X,Yu Z,Liao Z,Wang XS,van Leyen K,Sun X,Lo EH,Wang X

    更新日期:2015-10-14 00:00:00

  • Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts.

    abstract::In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying h...

    journal_title:Frontiers in cellular neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncel.2014.00382

    authors: He Y,Cai C,Tang D,Sun S,Li H

    更新日期:2014-11-13 00:00:00