Inferring single neuron properties in conductance based balanced networks.


:Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures.


Front Comput Neurosci


Pool RR,Mato G




Has Abstract


2011-10-12 00:00:00








  • Information diversity in structure and dynamics of simulated neuronal networks.

    abstract::Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neurona...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Mäki-Marttunen T,Aćimović J,Nykter M,Kesseli J,Ruohonen K,Yli-Harja O,Linne ML

    更新日期:2011-06-01 00:00:00

  • Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    abstract::Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Teplitzky BA,Zitella LM,Xiao Y,Johnson MD

    更新日期:2016-06-10 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • Direct connections assist neurons to detect correlation in small amplitude noises.

    abstract::We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitat...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Bolhasani E,Azizi Y,Valizadeh A

    更新日期:2013-08-14 00:00:00

  • Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    abstract::Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Daemi M,Harris LR,Crawford JD

    更新日期:2016-06-23 00:00:00

  • Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments.

    abstract::Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in deci...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Marković D,Kiebel SJ

    更新日期:2016-04-20 00:00:00

  • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.

    abstract::A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Potjans W,Morrison A,Diesmann M

    更新日期:2010-11-23 00:00:00

  • Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits.

    abstract::Synchronization of neural activity across brain regions is critical to processes that include perception, learning, and memory. After traumatic brain injury (TBI), neuronal degeneration is one possible effect and can alter communication between neural circuits. Consequently, synchronization between neurons may change ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Schumm SN,Gabrieli D,Meaney DF

    更新日期:2020-03-03 00:00:00

  • Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures.

    abstract::The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In parti...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Fan D,Duan L,Wang Q,Luan G

    更新日期:2017-07-07 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system.

    abstract::Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration)In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Page HJ,Walters D,Stringer SM

    更新日期:2015-02-06 00:00:00

  • Striatal Network Models of Huntington's Disease Dysfunction Phenotypes.

    abstract::We present a network model of striatum, which generates "winnerless" dynamics typical for a network of sparse, unidirectionally connected inhibitory units. We observe that these dynamics, while interesting and a good match to normal striatal electrophysiological recordings, are fragile. Specifically, we find that rand...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Zheng P,Kozloski J

    更新日期:2017-07-27 00:00:00

  • Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    abstract::The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior oli...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审


    authors: Luque NR,Garrido JA,Carrillo RR,D'Angelo E,Ros E

    更新日期:2014-08-15 00:00:00

  • Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release.

    abstract::Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Bird AD,Wall MJ,Richardson MJ

    更新日期:2016-11-25 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Computational models of neuron-astrocyte interaction in epilepsy.

    abstract::Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability, and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Volman V,Bazhenov M,Sejnowski TJ

    更新日期:2012-08-13 00:00:00

  • Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms.

    abstract::Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are li...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Constantinou M,Gonzalo Cogno S,Elijah DH,Kropff E,Gigg J,Samengo I,Montemurro MA

    更新日期:2016-12-26 00:00:00

  • Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention.

    abstract::Single-unit measurements have reported many different effects of attention on contrast-response (e.g., contrast-gain, response-gain, additive-offset dependent on visibility), while functional imaging measurements have more uniformly reported increases in response across all contrasts (additive-offset). The normalizati...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Hara Y,Pestilli F,Gardner JL

    更新日期:2014-02-19 00:00:00

  • Spike train auto-structure impacts post-synaptic firing and timing-based plasticity.

    abstract::Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a cond...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Scheller B,Castellano M,Vicente R,Pipa G

    更新日期:2011-12-16 00:00:00

  • Visual motion integration is mediated by directional ambiguities in local motion signals.

    abstract::The output of primary visual cortex (V1) is a piecemeal representation of the visual scene and the response of any one cell cannot unambiguously guide sensorimotor behavior. It remains unsolved how subsequent stages of cortical processing combine ("pool") these early visual signals into a coherent representation. We (...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Rocchi F,Ledgeway T,Webb BS

    更新日期:2013-11-18 00:00:00

  • Correlation-based analysis and generation of multiple spike trains using hawkes models with an exogenous input.

    abstract::The correlation structure of neural activity is believed to play a major role in the encoding and possibly the decoding of information in neural populations. Recently, several methods were developed for exactly controlling the correlation structure of multi-channel synthetic spike trains (Brette, 2009; Krumin and Shoh...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Krumin M,Reutsky I,Shoham S

    更新日期:2010-11-19 00:00:00

  • Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex.

    abstract::Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells thro...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Patel MJ

    更新日期:2018-06-12 00:00:00

  • A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    abstract::We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the AN...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Horne CD,Sumner CJ,Seeber BU

    更新日期:2016-02-08 00:00:00

  • Cooperation and Competition with Hyperscanning Methods: Review and Future Application to Emotion Domain.

    abstract::Cooperation and competition, as two common and opposite examples of interpersonal dynamics, are thought to be reflected by different cognitive, neural, and behavioral patterns. According to the conventional approach, they have been explored by measuring subjects' reactions during individual performance or turn-based i...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审


    authors: Balconi M,Vanutelli ME

    更新日期:2017-09-29 00:00:00

  • A model-based approach to predict muscle synergies using optimization: application to feedback control.

    abstract::This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result,...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Sharif Razavian R,Mehrabi N,McPhee J

    更新日期:2015-10-06 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • Impact of Physical Obstacles on the Structural and Effective Connectivity of in silico Neuronal Circuits.

    abstract::Scaffolds and patterned substrates are among the most successful strategies to dictate the connectivity between neurons in culture. Here, we used numerical simulations to investigate the capacity of physical obstacles placed on a flat substrate to shape structural connectivity, and in turn collective dynamics and effe...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Ludl AA,Soriano J

    更新日期:2020-08-31 00:00:00

  • Neural Coding With Bursts-Current State and Future Perspectives.

    abstract::Neuronal action potentials or spikes provide a long-range, noise-resistant means of communication between neurons. As point processes single spikes contain little information in themselves, i.e., outside the context of spikes from other neurons. Moreover, they may fail to cross a synapse. A burst, which consists of a ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审


    authors: Zeldenrust F,Wadman WJ,Englitz B

    更新日期:2018-07-06 00:00:00

  • Synaptic bouton properties are tuned to best fit the prevailing firing pattern.

    abstract::The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junc...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Knodel MM,Geiger R,Ge L,Bucher D,Grillo A,Wittum G,Schuster CM,Queisser G

    更新日期:2014-09-09 00:00:00

  • Revealing the Computational Meaning of Neocortical Interarea Signals.

    abstract::To understand the function of the neocortex, which is a hierarchical distributed network, it is useful giving meaning to the signals transmitted between these areas from the computational viewpoint. The overall anatomical structure or organs related to this network, including the neocortex, thalamus, and basal ganglia...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章


    authors: Yamakawa H

    更新日期:2020-08-18 00:00:00