Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

Abstract:

:Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

journal_name

Front Comput Neurosci

authors

Kneissler J,Drugowitsch J,Friston K,Butz MV

doi

10.3389/fncom.2015.00047

subject

Has Abstract

pub_date

2015-04-30 00:00:00

pages

47

issn

1662-5188

journal_volume

9

pub_type

杂志文章
  • Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics.

    abstract::Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20-25% of the LGN cell population. However, there is a definite gap in knowledge about the role ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00115

    authors: Bhattacharya BS,Bond TP,O'Hare L,Turner D,Durrant SJ

    更新日期:2016-11-16 00:00:00

  • On the dynamics of cortical development: synchrony and synaptic self-organization.

    abstract::We describe a model for cortical development that resolves long-standing difficulties of earlier models. It is proposed that, during embryonic development, synchronous firing of neurons and their competition for limited metabolic resources leads to selection of an array of neurons with ultra-small-world characteristic...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00004

    authors: Wright JJ,Bourke PD

    更新日期:2013-02-15 00:00:00

  • Empirical Evaluation of Voluntarily Activatable Muscle Synergies.

    abstract::The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factoriz...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2017.00082

    authors: Togo S,Imamizu H

    更新日期:2017-09-06 00:00:00

  • Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex.

    abstract::A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such mode...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00005

    authors: Thwaites A,Nimmo-Smith I,Fonteneau E,Patterson RD,Buttery P,Marslen-Wilson WD

    更新日期:2015-02-10 00:00:00

  • Nine criteria for a measure of scientific output.

    abstract::Scientific research produces new knowledge, technologies, and clinical treatments that can lead to enormous returns. Often, the path from basic research to new paradigms and direct impact on society takes time. Precise quantification of scientific output in the short-term is not an easy task but is critical for evalua...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00048

    authors: Kreiman G,Maunsell JH

    更新日期:2011-11-10 00:00:00

  • Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments.

    abstract::Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in deci...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00033

    authors: Marković D,Kiebel SJ

    更新日期:2016-04-20 00:00:00

  • A Neuronal Network Model for Pitch Selectivity and Representation.

    abstract::Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is de...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00057

    authors: Huang C,Rinzel J

    更新日期:2016-06-16 00:00:00

  • Optimization of Real-Time EEG Artifact Removal and Emotion Estimation for Human-Robot Interaction Applications.

    abstract::Affective human-robot interaction requires lightweight software and cheap wearable devices that could further this field. However, the estimation of emotions in real-time poses a problem that has not yet been optimized. An optimization is proposed for the emotion estimation methodology including artifact removal, feat...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00080

    authors: Val-Calvo M,Álvarez-Sánchez JR,Ferrández-Vicente JM,Fernández E

    更新日期:2019-11-26 00:00:00

  • Input-output relation and energy efficiency in the neuron with different spike threshold dynamics.

    abstract::Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00062

    authors: Yi GS,Wang J,Tsang KM,Wei XL,Deng B

    更新日期:2015-05-27 00:00:00

  • Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite.

    abstract::Neuromodulatory inputs from brainstem systems modulate the normal function of spinal motoneurons by altering the activation properties of persistent inward currents (PICs) in their dendrites. However, the effect of the PIC on firing outputs also depends on its location in the dendritic tree. To investigate the interac...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00110

    authors: Kim H,Heckman CJ

    更新日期:2014-09-09 00:00:00

  • A high-capacity model for one shot association learning in the brain.

    abstract::We present a high-capacity model for one-shot association learning (hetero-associative memory) in sparse networks. We assume that basic patterns are pre-learned in networks and associations between two patterns are presented only once and have to be learned immediately. The model is a combination of an Amit-Fusi like ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00140

    authors: Einarsson H,Lengler J,Steger A

    更新日期:2014-11-07 00:00:00

  • Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    abstract::Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor cont...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2012.00066

    authors: Lan N,He X

    更新日期:2012-08-30 00:00:00

  • Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model.

    abstract::Dopaminergic neurons in the mammalian substantia nigra display characteristic phasic responses to stimuli which reliably predict the receipt of primary rewards. These responses have been suggested to encode reward prediction-errors similar to those used in reinforcement learning. Here, we propose a model of dopaminerg...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00021

    authors: Chorley P,Seth AK

    更新日期:2011-05-18 00:00:00

  • Computational Neural Modeling of Auditory Cortical Receptive Fields.

    abstract::Previous studies have shown that the auditory cortex can enhance the perception of behaviorally important sounds in the presence of background noise, but the mechanisms by which it does this are not yet elucidated. Rapid plasticity of spectrotemporal receptive fields (STRFs) in the primary (A1) cortical neurons is obs...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00028

    authors: Chambers JD,Elgueda D,Fritz JB,Shamma SA,Burkitt AN,Grayden DB

    更新日期:2019-05-24 00:00:00

  • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.

    abstract::A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge th...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00141

    authors: Potjans W,Morrison A,Diesmann M

    更新日期:2010-11-23 00:00:00

  • A simple transfer function for nonlinear dendritic integration.

    abstract::Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2015.00098

    authors: Singh MF,Zald DH

    更新日期:2015-08-10 00:00:00

  • Stability constraints on large-scale structural brain networks.

    abstract::Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure a...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00031

    authors: Gray RT,Robinson PA

    更新日期:2013-04-12 00:00:00

  • A Computational Model of Interactions Between Neuronal and Astrocytic Networks: The Role of Astrocytes in the Stability of the Neuronal Firing Rate.

    abstract::Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales ...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2019.00092

    authors: Lenk K,Satuvuori E,Lallouette J,Ladrón-de-Guevara A,Berry H,Hyttinen JAK

    更新日期:2020-01-22 00:00:00

  • Disinhibition-Induced Delayed Onset of Epileptic Spike-Wave Discharges in a Five Variable Model of Cortex and Thalamus.

    abstract::Based on a modified neural field network model composed of cortex and thalamus, we here propose a computational framework to investigate the onset control of absence seizure, which is characterized by the spike-wave discharges. Firstly, we briefly demonstrate the existence of various transition types in Taylor's model...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00028

    authors: Liu S,Wang Q,Fan D

    更新日期:2016-04-05 00:00:00

  • Short-Term Facilitation may Stabilize Parametric Working Memory Trace.

    abstract::Networks with continuous set of attractors are considered to be a paradigmatic model for parametric working memory (WM), but require fine tuning of connections and are thus structurally unstable. Here we analyzed the network with ring attractor, where connections are not perfectly tuned and the activity state therefor...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2011.00040

    authors: Itskov V,Hansel D,Tsodyks M

    更新日期:2011-10-24 00:00:00

  • A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition.

    abstract::A classic problem in neuroscience is how temporal sequences (TSs) can be recognized. This problem is exemplified in the olfactory system, where an odor is defined by the TS of olfactory bulb (OB) output that occurs during a sniff. This sequence is discrete because the output is subdivided by gamma frequency oscillatio...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2014.00108

    authors: Sanders H,Kolterman BE,Shusterman R,Rinberg D,Koulakov A,Lisman J

    更新日期:2014-09-17 00:00:00

  • Statistical physics of pairwise probability models.

    abstract::Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the mean values and correlations betw...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/neuro.10.022.2009

    authors: Roudi Y,Aurell E,Hertz JA

    更新日期:2009-11-17 00:00:00

  • Optimizing Clinical Assessments in Parkinson's Disease Through the Use of Wearable Sensors and Data Driven Modeling.

    abstract::The emergence of motion sensors as a tool that provides objective motor performance data on individuals afflicted with Parkinson's disease offers an opportunity to expand the horizon of clinical care for this neurodegenerative condition. Subjective clinical scales and patient based motor diaries have limited clinometr...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2018.00072

    authors: Ramdhani RA,Khojandi A,Shylo O,Kopell BH

    更新日期:2018-09-11 00:00:00

  • Learning modular policies for robotics.

    abstract::A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. Whil...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章,评审

    doi:10.3389/fncom.2014.00062

    authors: Neumann G,Daniel C,Paraschos A,Kupcsik A,Peters J

    更新日期:2014-06-11 00:00:00

  • The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake.

    abstract::Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00103

    authors: Angleys H,Jespersen SN,Østergaard L

    更新日期:2016-10-13 00:00:00

  • Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference.

    abstract::The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is a controversial issue in current brain research. A major difficulty is that currently available tools for the analysis of massively parallel spike trains (N >10) for higher-order correlations typically require vast sam...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2010.00016

    authors: Staude B,Grün S,Rotter S

    更新日期:2010-07-02 00:00:00

  • A Spiking Neural Model of HT3D for Corner Detection.

    abstract::Obtaining good quality image features is of remarkable importance for most computer vision tasks. It has been demonstrated that the first layers of the human visual cortex are devoted to feature detection. The need for these features has made line, segment, and corner detection one of the most studied topics in comput...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2018.00037

    authors: Bachiller-Burgos P,Manso LJ,Bustos P

    更新日期:2018-06-01 00:00:00

  • Interareal coupling reduces encoding variability in multi-area models of spatial working memory.

    abstract::Persistent activity observed during delayed-response tasks for spatial working memory (Funahashi et al., 1989) has commonly been modeled by recurrent networks whose dynamics is described as a bump attractor (Compte et al., 2000). We examine the effects of interareal architecture on the dynamics of bump attractors in s...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2013.00082

    authors: Kilpatrick ZP

    更新日期:2013-07-01 00:00:00

  • A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    abstract::We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the AN...

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00008

    authors: Horne CD,Sumner CJ,Seeber BU

    更新日期:2016-02-08 00:00:00

  • Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface.

    abstract::Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task....

    journal_title:Frontiers in computational neuroscience

    pub_type: 杂志文章

    doi:10.3389/fncom.2016.00130

    authors: Manor R,Mishali L,Geva AB

    更新日期:2016-12-20 00:00:00